Nabil M Ahmed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2865665/publications.pdf

Version: 2024-02-01

70 papers

8,214 citations

147566 31 h-index 98622 67 g-index

75 all docs

75 docs citations

75 times ranked 11193 citing authors

#	Article	IF	Citations
1	Current concepts in the diagnosis and management of cytokine release syndrome. Blood, 2014, 124, 188-195.	0.6	2,080
2	Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor–Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. Journal of Clinical Oncology, 2015, 33, 1688-1696.	0.8	778
3	HER2-Specific Chimeric Antigen Receptor–Modified Virus-Specific T Cells for Progressive Glioblastoma. JAMA Oncology, 2017, 3, 1094.	3.4	608
4	Tandem CAR T cells targeting HER2 and IL13R $\hat{l}\pm2$ mitigate tumor antigen escape. Journal of Clinical Investigation, 2016, 126, 3036-3052.	3.9	515
5	Identification of diverse astrocyte populations and their malignant analogs. Nature Neuroscience, 2017, 20, 396-405.	7.1	410
6	TanCAR: A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy. Molecular Therapy - Nucleic Acids, 2013, 2, e105.	2.3	371
7	HER2-Specific T Cells Target Primary Glioblastoma Stem Cells and Induce Regression of Autologous Experimental Tumors. Clinical Cancer Research, 2010, 16, 474-485.	3.2	324
8	Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro-Oncology, 2018, 20, 506-518.	0.6	306
9	Combinational Targeting Offsets Antigen Escape and Enhances Effector Functions of Adoptively Transferred T Cells in Glioblastoma. Molecular Therapy, 2013, 21, 2087-2101.	3.7	300
10	T Cells Redirected to EphA2 for the Immunotherapy of Glioblastoma. Molecular Therapy, 2013, 21, 629-637.	3.7	200
11	Immunotherapy for Osteosarcoma: Genetic Modification of T cells Overcomes Low Levels of Tumor Antigen Expression. Molecular Therapy, 2009, 17, 1779-1787.	3.7	171
12	Regression of Experimental Medulloblastoma following Transfer of HER2-Specific T Cells. Cancer Research, 2007, 67, 5957-5964.	0.4	153
13	Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nature Medicine, 2020, 26, 720-731.	15.2	141
14	Immunogenicity of CAR T cells in cancer therapy. Nature Reviews Clinical Oncology, 2021, 18, 379-393.	12.5	128
15	Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. Journal of Neuro-Oncology, 2011, 104, 55-63.	1.4	127
16	TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Research, 2018, 78, 489-500.	0.4	122
17	PiggyBac-mediated Cancer Immunotherapy Using EBV-specific Cytotoxic T-cells Expressing HER2-specific Chimeric Antigen Receptor. Molecular Therapy, 2011, 19, 2133-2143.	3.7	110
18	CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression. Leukemia, 2021, 35, 75-89.	3.3	107

#	Article	IF	CITATIONS
19	Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nature Communications, 2020, 11, 3549.	5.8	103
20	CNS Langerhans cell histiocytosis: Common hematopoietic origin for LCHâ€associated neurodegeneration and mass lesions. Cancer, 2018, 124, 2607-2620.	2.0	73
21	The Evolution of T-cell Therapies for Solid Malignancies. Clinical Cancer Research, 2015, 21, 3384-3392.	3.2	71
22	T cells redirected to interleukin-13Rα2 with interleukin-13 mutein–chimeric antigen receptors have anti-glioma activity but alsoÂrecognize interleukin-13Rα1. Cytotherapy, 2014, 16, 1121-1131.	0.3	68
23	A Simple and Sensitive Method for Measuring Tumor-Specific T Cell Cytotoxicity. PLoS ONE, 2010, 5, e11867.	1.1	66
24	Generation of Polyclonal CMV-specific T Cells for the Adoptive Immunotherapy of Glioblastoma. Journal of Immunotherapy, 2012, 35, 159-168.	1.2	59
25	Insights into pediatric rhabdomyosarcoma research: Challenges and goals. Pediatric Blood and Cancer, 2019, 66, e27869.	0.8	57
26	Medulloblastoma expresses CD1d and can be targeted for immunotherapy with NKT cells. Clinical Immunology, 2013, 149, 55-64.	1.4	53
27	The miR-223/Nuclear Factor I-A Axis Regulates Glial Precursor Proliferation and Tumorigenesis in the CNS. Journal of Neuroscience, 2013, 33, 13560-13568.	1.7	51
28	Quantitative Imaging Approaches to Study the CAR Immunological Synapse. Molecular Therapy, 2017, 25, 1757-1768.	3.7	49
29	Adoptive Cell Therapies for Glioblastoma. Frontiers in Oncology, 2013, 3, 275.	1.3	47
30	Targeting hydrogen sulphide signaling in breast cancer. Journal of Advanced Research, 2021, 27, 177-190.	4.4	46
31	A homing system targets therapeutic T cells to brain cancer. Nature, 2018, 561, 331-337.	13.7	36
32	Immunotherapy for pediatric brain tumors: past and present. Neuro-Oncology, 2019, 21, 1226-1238.	0.6	32
33	Expansion of HER2-CAR T cells after lymphodepletion and clinical responses in patients with advanced sarcoma Journal of Clinical Oncology, 2017, 35, 10508-10508.	0.8	32
34	Glioma Cells Display Complex Cell Surface Topographies That Resist the Actions of Cytolytic Effector Lymphocytes. Journal of Immunology, 2010, 185, 4793-4803.	0.4	26
35	Crosstalk between Medulloblastoma Cells and Endothelium Triggers a Strong Chemotactic Signal Recruiting T Lymphocytes to the Tumor Microenvironment. PLoS ONE, 2011, 6, e20267.	1.1	26
36	Overexpression and constitutive nuclear localization of cohesin protease Separase protein correlates with high incidence of relapse and reduced overall survival in glioblastoma multiforme. Journal of Neuro-Oncology, 2014, 119, 27-35.	1.4	24

#	Article	IF	CITATIONS
37	Is CMV a target in pediatric glioblastoma? Expression of CMV proteins, pp65 and IE1-72 and CMV nucleic acids in a cohort of pediatric glioblastoma patients. Journal of Neuro-Oncology, 2015, 125, 307-315.	1.4	24
38	High Incidence of Autoimmune Disease after Hematopoietic Stem Cell Transplantation for Chronic Granulomatous Disease. Biology of Blood and Marrow Transplantation, 2018, 24, 1643-1650.	2.0	24
39	Successful Treatment of Stem Cell Graft Failure in Pediatric Patients Using a Submyeloablative Regimen of Campath-1H and Fludarabine. Biology of Blood and Marrow Transplantation, 2008, 14, 1298-1304.	2.0	21
40	Outcomes after Allogeneic Transplant in Patients with Wiskott-Aldrich Syndrome. Biology of Blood and Marrow Transplantation, 2018, 24, 537-541.	2.0	21
41	Tandem CAR T cells targeting HER2 and IL13RÎ ± 2 mitigate tumor antigen escape. Journal of Clinical Investigation, 2019, 129, 3464-3464.	3.9	20
42	How to design effective vaccines: lessons from an old success story. Expert Review of Vaccines, 2009, 8, 543-546.	2.0	16
43	Cellular immunotherapy for pediatric solid tumors. Cytotherapy, 2015, 17, 3-17.	0.3	15
44	LC3A Silencing Hinders Aggresome Vimentin Cage Clearance in Primary Choroid Plexus Carcinoma. Scientific Reports, 2017, 7, 8022.	1.6	15
45	Current Allogeneic Hematopoietic Stem Cell Transplantation for Pediatric Acute Lymphocytic Leukemia: Success, Failure and Future Perspectives—A Single-Center Experience, 2008 to 2016. Biology of Blood and Marrow Transplantation, 2018, 24, 1424-1431.	2.0	15
46	Novel approaches and mechanisms of immunotherapy for glioblastoma. Discovery Medicine, 2014, 17, 145-54.	0.5	15
47	Long-term follow-up for the development of subsequent malignancies in patients treated with genetically modified IECs. Blood, 2022, 140, 16-24.	0.6	14
48	Gene Therapy: Charting a Future Courseâ€"Summary of a National Institutes of Health Workshop, April 12, 2013. Human Gene Therapy, 2014, 25, 488-497.	1.4	12
49	Targeting the tumour profile using broad spectrum chimaeric antigen receptor T-cells. Biochemical Society Transactions, 2016, 44, 391-396.	1.6	12
50	A subset of cytotoxic effector memory T cells enhances CAR T cell efficacy in a model of pancreatic ductal adenocarcinoma. Science Translational Medicine, 2021, 13, .	5.8	12
51	Viral lymphomagenesis. Current Opinion in Hematology, 2006, 13, 254-259.	1.2	10
52	Medulloblastomaâ€"Biology and Microenvironment: <i>A Review</i> . Pediatric Hematology and Oncology, 2012, 29, 495-506.	0.3	10
53	Human Cytomegalovirus Antigens in Malignant Gliomas as Targets for Adoptive Cellular Therapy. Frontiers in Oncology, 2014, 4, 338.	1.3	10
54	Polystyrene microspheres enable 10â€color compensation for immunophenotyping of primary human leukocytes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 1038-1046.	1.1	10

#	Article	IF	Citations
55	Acute Hepatic Sequestration Associated With Pneumococcal Infection in a 5-year-old Boy With Sickle $\hat{l}^2\hat{A}^\circ$ -thalassemia. Journal of Pediatric Hematology/Oncology, 2007, 29, 720-724.	0.3	9
56	Realism and pragmatism in developing an effective chimeric antigen receptor T-cell product for solid cancers. Cytotherapy, 2016, 18, 1382-1392.	0.3	8
57	Targeting CD19-negative relapsed B-acute lymphoblastic leukemia using trivalent CAR T cells Journal of Clinical Oncology, 2018, 36, 121-121.	0.8	8
58	Genetic modification of T cells with a novel bispecific chimeric antigen receptor to enhance the control of high-grade glioma (HGG) Journal of Clinical Oncology, 2014, 32, 10027-10027.	0.8	7
59	T-cell-based Therapies for Malignancy and Infection in Childhood. Pediatric Clinics of North America, 2010, 57, 83-96.	0.9	5
60	Armed hunter killers: discerning the role of adoptive T-cell transfer for glioblastoma. Immunotherapy, 2015, 7, 481-485.	1.0	5
61	Safety of Multiple Doses of CAR T Cells. Blood, 2015, 126, 4425-4425.	0.6	5
62	Response to the comment on "Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma―by Bielamowicz et al. Neuro-Oncology, 2018, 20, 1004-1005.	0.6	4
63	A cellular platform to enable targeted brain delivery of T cells to glioblastoma Journal of Clinical Oncology, 2017, 35, 2053-2053.	0.8	3
64	IMMU-05. COMBINATIONAL CAR T-CELL AND EPIGENETIC MODIFIER THERAPY TO TARGET POSTERIOR FOSSA TUMORS. Neuro-Oncology, 2019, 21, ii93-ii94.	0.6	1
65	Immunotherapy for Pediatric Central Nervous System Tumors. Biology of Blood and Marrow Transplantation, 2010, 16, S75-S81.	2.0	0
66	CAR T-Cell Therapy for CNS Malignancies. , 2020, , 165-198.		0
67	Genetically Modified Her2-Specific T Cells Recognize Low and High Her2 Expressing Breast Cancer Cells Blood, 2005, 106, 5540-5540.	0.6	0
68	Matched Unrelated Allogeneic Stem Cell Transplantation for Patients with Congenital Amegakaryocytic Thrombocytopenia: Texas Children's Hospital Experience. Blood, 2015, 126, 5529-5529.	0.6	0
69	Cell Adhesion of ALL to Stromal Cells May Mediate CAR T-Cell Resistance: A Novel Escape Mechanism for Immunotherapy. Blood, 2019, 134, 2623-2623.	0.6	0
70	Modulation of inhibitory signals in CAR T cells leads to improved activity against glioblastoma Journal of Clinical Oncology, 2020, 38, 3031-3031.	0.8	0