Helen McIlleron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2865569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leveraging physiologically based pharmacokinetic modeling to optimize dosing for lopinavir/ritonavir with rifampin in pediatric patients. Pharmacotherapy, 2023, 43, 638-649.	2.6	2
2	Abacavir pharmacokinetics in African children living with HIV: A pooled analysis describing the effects of age, malnutrition and common concomitant medications. British Journal of Clinical Pharmacology, 2022, 88, 403-415.	2.4	2
3	Pharmacokinetics of First-Line Drugs in Children With Tuberculosis, Using World Health Organization–Recommended Weight Band Doses and Formulations. Clinical Infectious Diseases, 2022, 74, 1767-1775.	5.8	17
4	Pharmacogenetics of interaction between depot medroxyprogesterone acetate and efavirenz, rifampicin, and isoniazid during treatment of HIV and tuberculosis. Pharmacogenetics and Genomics, 2022, 32, 24-30.	1.5	3
5	One dose does not fit all: revising the WHO paediatric dosing tool to include the non-linear effect of body size and maturation. The Lancet Child and Adolescent Health, 2022, 6, 9-10.	5.6	8
6	Treating children with tuberculosis—Using pharmacometrics to do better. British Journal of Clinical Pharmacology, 2022, 88, 894-896.	2.4	1
7	Shorter Treatment for Nonsevere Tuberculosis in African and Indian Children. New England Journal of Medicine, 2022, 386, 911-922.	27.0	90
8	Population pharmacokinetics of ethambutol in African children: a pooled analysis. Journal of Antimicrobial Chemotherapy, 2022, 77, 1949-1959.	3.0	3
9	Bedaquiline exposure in pregnancy and breastfeeding in women with rifampicinâ€resistant tuberculosis. British Journal of Clinical Pharmacology, 2022, 88, 3548-3558.	2.4	8
10	Pharmacokinetics and Dose Optimization Strategies of Para-Aminosalicylic Acid in Children with Rifampicin-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2022, , e0226421.	3.2	0
11	The Effect of Rifampicin on Darunavir, Ritonavir, and Dolutegravir Exposure within Peripheral Blood Mononuclear Cells: a Dose Escalation Study. Antimicrobial Agents and Chemotherapy, 2022, , e0013622.	3.2	0
12	Pharmacometrics in tuberculosis: progress and opportunities. International Journal of Antimicrobial Agents, 2022, 60, 106620.	2.5	3
13	Neuropsychiatric toxicity and cycloserine concentrations during treatment for multidrug-resistant tuberculosis. International Journal of Infectious Diseases, 2021, 105, 688-694.	3.3	20
14	Mycobacterium tuberculosis precursor rRNA as a measure of treatment-shortening activity of drugs and regimens. Nature Communications, 2021, 12, 2899.	12.8	38
15	QT effects of bedaquiline, delamanid, or both in patients with rifampicin-resistant tuberculosis: a phase 2, open-label, randomised, controlled trial. Lancet Infectious Diseases, The, 2021, 21, 975-983.	9.1	60
16	A Semimechanistic Pharmacokinetic Model for Depot Medroxyprogesterone Acetate and Drug–Drug Interactions With Antiretroviral and Antituberculosis Treatment. Clinical Pharmacology and Therapeutics, 2021, 110, 1057-1065.	4.7	5
17	Relationship between Plasma and Intracellular Concentrations of Bedaquiline and Its M2 Metabolite in South African Patients with Rifampin-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0239920.	3.2	10
18	Effect of Isoniazid Intake on Ethionamide Pharmacokinetics and Target Attainment in Multidrug-Resistant Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2021, 65, e0027821.	3.2	4

#	Article	IF	CITATIONS
19	Pharmacokinetics and Drug-Drug Interactions of Abacavir and Lamuvudine Co-administered With Antituberculosis Drugs in HIV-Positive Children Treated for Multidrug-Resistant Tuberculosis. Frontiers in Pharmacology, 2021, 12, 722204.	3.5	3
20	Integrating Pharmacokinetics and Pharmacodynamics in Operational Research to End Tuberculosis. Clinical Infectious Diseases, 2020, 70, 1774-1780.	5.8	59
21	Pharmacokinetics and Pharmacodynamics of Depot Medroxyprogesterone Acetate in African Women Receiving Treatment for Human Immunodeficiency Virus and Tuberculosis: Potential Concern for Standard Dosing Frequency. Clinical Infectious Diseases, 2020, 71, 517-524.	5.8	6
22	Early antituberculosis drug exposure in hospitalized patients with human immunodeficiency virusâ€associated tuberculosis. British Journal of Clinical Pharmacology, 2020, 86, 966-978.	2.4	8
23	Pharmacokinetics and other risk factors for kanamycin-induced hearing loss in patients with multi-drug resistant tuberculosis. International Journal of Audiology, 2020, 59, 219-223.	1.7	7
24	Population Pharmacokinetics and Dosing of Ethionamide in Children with Tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	7
25	Pharmacokinetics of antiretroviral and tuberculosis drugs in children with HIV/TB co-infection: a systematic review. Journal of Antimicrobial Chemotherapy, 2020, 75, 3433-3457.	3.0	23
26	Population Pharmacokinetics of Cycloserine and Pharmacokinetic/Pharmacodynamic Target Attainment in Multidrug-Resistant Tuberculosis Patients Dosed with Terizidone. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	13
27	Abacavir Exposure in Children Cotreated for Tuberculosis with Rifampin and Superboosted Lopinavir-Ritonavir. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	5
28	Pharmacokinetic profile and safety of adjusted doses of darunavir/ritonavir with rifampicin in people living with HIV. Journal of Antimicrobial Chemotherapy, 2020, 75, 1019-1025.	3.0	12
29	Population Pharmacokinetics of Isoniazid, Pyrazinamide, and Ethambutol in Pregnant South African Women with Tuberculosis and HIV. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	20
30	<i>N</i> -Acetyltransferase 2 Genotypes among Zulu-Speaking South Africans and Isoniazid and <i>N</i> -Acetyl-Isoniazid Pharmacokinetics during Antituberculosis Treatment. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	23
31	Microbial Translocation Does Not Drive Immune Activation in Ugandan Children Infected With HIV. Journal of Infectious Diseases, 2019, 219, 89-100.	4.0	11
32	The Lancet Respiratory Medicine Commission: 2019 update: epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosis. Lancet Respiratory Medicine,the, 2019, 7, 820-826.	10.7	92
33	Pharmacokinetics of adjusted-dose 8-hourly lopinavir/ritonavir in HIV-infected children co-treated with rifampicin. Journal of Antimicrobial Chemotherapy, 2019, 74, 2347-2351.	3.0	5
34	Quantitative assessment of the activity of antituberculosis drugs and regimens. Expert Review of Anti-Infective Therapy, 2019, 17, 449-457.	4.4	3
35	Effects of genetic variability on rifampicin and isoniazid pharmacokinetics in South African patients with recurrent tuberculosis. Pharmacogenomics, 2019, 20, 225-240.	1.3	32
36	A Systematic Review on the Effect of HIV Infection on the Pharmacokinetics of First-Line Tuberculosis Drugs. Clinical Pharmacokinetics, 2019, 58, 747-766.	3.5	53

#	Article	IF	CITATIONS
37	Current research toward optimizing dosing of first-line antituberculosis treatment. Expert Review of Anti-Infective Therapy, 2019, 17, 27-38.	4.4	25
38	Lopinavir–ritonavir super-boosting in young HIV-infected children on rifampicin-based tuberculosis therapy compared with lopinavir–ritonavir without rifampicin: a pharmacokinetic modelling and clinical study. Lancet HIV,the, 2019, 6, e32-e42.	4.7	19
39	Effect of genetic variation in <i>UGT1A</i> and <i>ABCB1</i> on moxifloxacin pharmacokinetics in South African patients with tuberculosis. Pharmacogenomics, 2018, 19, 17-29.	1.3	16
40	Shorter treatment for minimal tuberculosis (TB) in children (SHINE): a study protocol for a randomised controlled trial. Trials, 2018, 19, 237.	1.6	33
41	Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy, 2018, 73, 2305-2313.	3.0	71
42	Effect of Coadministration of Lidocaine on the Pain and Pharmacokinetics of Intramuscular Amikacin in Children With Multidrug-Resistant Tuberculosis: A Randomized Crossover Trial. Pediatric Infectious Disease Journal, 2018, 37, 1199-1203.	2.0	7
43	Pharmacokinetics and Drug-Drug Interactions of Lopinavir-Ritonavir Administered with First- and Second-Line Antituberculosis Drugs in HIV-Infected Children Treated for Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	16
44	Evidence-Based Design of Fixed-Dose Combinations: Principles and Application to Pediatric Anti-Tuberculosis Therapy. Clinical Pharmacokinetics, 2018, 57, 591-599.	3.5	26
45	Transformation Morphisms and Time-to-Extinction Analysis That Map Therapy Duration From Preclinical Models to Patients With Tuberculosis: Translating From Apples to Oranges. Clinical Infectious Diseases, 2018, 67, S349-S358.	5.8	26
46	Gatifloxacin Pharmacokinetics/Pharmacodynamics–based Optimal Dosing for Pulmonary and Meningeal Multidrug-resistant Tuberculosis. Clinical Infectious Diseases, 2018, 67, S274-S283.	5.8	23
47	Artificial intelligence–derived 3-Way Concentration-dependent Antagonism of Gatifloxacin, Pyrazinamide, and Rifampicin During Treatment of Pulmonary Tuberculosis. Clinical Infectious Diseases, 2018, 67, S284-S292.	5.8	16
48	<scp>d</scp> -Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-resistant Tuberculosis: A Faustian Deal. Clinical Infectious Diseases, 2018, 67, S308-S316.	5.8	45
49	Effect of efavirenz-based antiretroviral therapy and high-dose rifampicin on the pharmacokinetics of isoniazid and acetyl-isoniazid. Journal of Antimicrobial Chemotherapy, 2018, 74, 139-148.	3.0	21
50	Impact of alcohol consumption on tuberculosis treatment outcomes: a prospective longitudinal cohort study protocol. BMC Infectious Diseases, 2018, 18, 488.	2.9	30
51	Effect of lidocaine on kanamycin injection-site pain in patients with multidrug-resistant tuberculosis. International Journal of Tuberculosis and Lung Disease, 2018, 22, 926-930.	1.2	2
52	Steady state pharmacokinetics of cycloserine in patients on terizidone for multidrug-resistant tuberculosis. International Journal of Tuberculosis and Lung Disease, 2018, 22, 30-33.	1.2	19
53	Quality assurance of rifampicin-containing fixed-drug combinations in South Africa: dosing implications. International Journal of Tuberculosis and Lung Disease, 2018, 22, 537-543.	1.2	16
54	Optimal drug therapies for HIV in pregnant women and in children: Considering pharmacogenetics, drug-drug interactions and formulations. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY81-3.	0.0	0

#	Article	IF	CITATIONS
55	Standardized methods for enhanced quality and comparability of tuberculous meningitis studies. Clinical Infectious Diseases, 2017, 64, ciw757.	5.8	61
56	Determinants of virological outcome and adverse events in African children treated with paediatric nevirapine fixed-dose-combination tablets. Aids, 2017, 31, 905-915.	2.2	7
57	Effect of rifampicin and efavirenz on moxifloxacin concentrations when co-administered in patients with drug-susceptible TB. Journal of Antimicrobial Chemotherapy, 2017, 72, 1441-1449.	3.0	38
58	Pharmacokinetics of Pyrazinamide and Optimal Dosing Regimens for Drug-Sensitive and -Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	28
59	Optimizing Research to Speed Up Availability of Pediatric Antiretroviral Drugs and Formulations. Clinical Infectious Diseases, 2017, 64, 1597-1603.	5.8	26
60	The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respiratory Medicine,the, 2017, 5, 291-360.	10.7	459
61	A Review of Moxifloxacin for the Treatment of Drug‣usceptible Tuberculosis. Journal of Clinical Pharmacology, 2017, 57, 1369-1386.	2.0	52
62	Effects on the QT Interval of a Gatifloxacin-Containing Regimen versus Standard Treatment of Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	11
63	Prevention of TB using rifampicin plus isoniazid reduces nevirapine concentrations in HIV-exposed infants. Journal of Antimicrobial Chemotherapy, 2017, 72, 2028-2034.	3.0	9
64	Optimization of the strength of the efavirenz/lamivudine/abacavir fixed-dose combination for paediatric patients. Journal of Antimicrobial Chemotherapy, 2017, 72, 490-495.	3.0	4
65	Effect of diurnal variation,CYP2B6genotype and age on the pharmacokinetics of nevirapine in African children. Journal of Antimicrobial Chemotherapy, 2017, 72, 190-199.	3.0	10
66	Concentration-Dependent Antagonism and Culture Conversion in Pulmonary Tuberculosis. Clinical Infectious Diseases, 2017, 64, 1350-1359.	5.8	40
67	Treatment Failure, Drug Resistance, and CD4 T-Cell Count Decline Among Postpartum Women on Antiretroviral Therapy in South Africa. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 71, 31-37.	2.1	23
68	Plasma Efavirenz Exposure, Sex, and Age Predict Virological Response in HIV-Infected African Children. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 73, 161-168.	2.1	14
69	Model-Based Evaluation of Higher Doses of Rifampin Using a Semimechanistic Model Incorporating Autoinduction and Saturation of Hepatic Extraction. Antimicrobial Agents and Chemotherapy, 2016, 60, 487-494.	3.2	61
70	The impact of genetic polymorphisms on the pharmacokinetics of efavirenz in African children. British Journal of Clinical Pharmacology, 2016, 82, 185-198.	2.4	28
71	HIV-1 Coinfection Does Not Reduce Exposure to Rifampin, Isoniazid, and Pyrazinamide in South African Tuberculosis Outpatients. Antimicrobial Agents and Chemotherapy, 2016, 60, 6050-6059.	3.2	25
72	Effect of Lopinavir and Nevirapine Concentrations on Viral Outcomes in Protease Inhibitor-experienced HIV-infected Children. Pediatric Infectious Disease Journal, 2016, 35, e378-e383.	2.0	4

#	Article	IF	CITATIONS
73	Abacavir, zidovudine, or stavudine as paediatric tablets for African HIV-infected children (CHAPAS-3): an open-label, parallel-group, randomised controlled trial. Lancet Infectious Diseases, The, 2016, 16, 169-179.	9.1	33
74	Bioavailability of two licensed paediatric rifampicin suspensions: implications for quality control programmes. International Journal of Tuberculosis and Lung Disease, 2016, 20, 915-919.	1.2	20
75	Drug–drug interactions between bedaquiline and the antiretrovirals lopinavir/ritonavir and nevirapine in HIV-infected patients with drug-resistant TB. Journal of Antimicrobial Chemotherapy, 2016, 71, 1037-1040.	3.0	50
76	Population Pharmacokinetics of Rifampin in Pregnant Women with Tuberculosis and HIV Coinfection in Soweto, South Africa. Antimicrobial Agents and Chemotherapy, 2016, 60, 1234-1241.	3.2	32
77	Pharmacokinetics of Rifampin, Isoniazid, Pyrazinamide, and Ethambutol in Infants Dosed According to Revised WHO-Recommended Treatment Guidelines. Antimicrobial Agents and Chemotherapy, 2016, 60, 2171-2179.	3.2	53
78	Population pharmacokinetic drug–drug interaction pooled analysis of existing data for rifabutin and HIV PIs. Journal of Antimicrobial Chemotherapy, 2016, 71, 1330-1340.	3.0	10
79	Effect of <i>SLCO1B1</i> Polymorphisms on Rifabutin Pharmacokinetics in African HIV-Infected Patients with Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 617-620.	3.2	12
80	Pharmacogenetics of plasma efavirenz exposure in HIVâ€infected adults and children in South Africa. British Journal of Clinical Pharmacology, 2015, 80, 146-156.	2.4	64
81	Two-stage activity-safety study of daily rifapentine during intensive phase treatment of pulmonary tuberculosis. International Journal of Tuberculosis and Lung Disease, 2015, 19, 780-786.	1.2	12
82	Lipidâ€based nutrient supplements do not affect efavirenz but lower plasma nevirapine concentrations in Ethiopian adult HIV patients. HIV Medicine, 2015, 16, 403-411.	2.2	6
83	Pediatric tuberculous meningitis: Modelâ€based approach to determining optimal doses of the antiâ€tuberculosis drugs rifampin and levofloxacin for children. Clinical Pharmacology and Therapeutics, 2015, 98, 622-629.	4.7	47
84	Pharmacokinetics of Isoniazid, Pyrazinamide, and Ethambutol in Newly Diagnosed Pulmonary TB Patients in Tanzania. PLoS ONE, 2015, 10, e0141002.	2.5	73
85	Pharmacokinetics and safety of rifabutin in young HIV-infected children receiving rifabutin and lopinavir/ritonavir. Journal of Antimicrobial Chemotherapy, 2015, 70, 543-549.	3.0	42
86	Combined Effect of CYP2B6 and NAT2 Genotype on Plasma Efavirenz Exposure During Rifampin-based Antituberculosis Therapy in the STRIDE Study. Clinical Infectious Diseases, 2015, 60, 1860-1863.	5.8	28
87	Towards early inclusion of children in tuberculosis drugs trials: a consensus statement. Lancet Infectious Diseases, The, 2015, 15, 711-720.	9.1	66
88	The pharmacokinetics of lopinavir/ritonavir when given with isoniazid in South African HIV-infected individuals. International Journal of Tuberculosis and Lung Disease, 2015, 19, 1194-1196.	1.2	4
89	Poor Penetration of Antibiotics Into Pericardium in Pericardial Tuberculosis. EBioMedicine, 2015, 2, 1640-1649.	6.1	26
90	Pharmacokinetics and Safety of Moxifloxacin in Children With Multidrug-Resistant Tuberculosis. Clinical Infectious Diseases, 2015, 60, 549-556.	5.8	62

#	Article	IF	CITATIONS
91	Impact of Nonlinear Interactions of Pharmacokinetics and MICs on Sputum Bacillary Kill Rates as a Marker of Sterilizing Effect in Tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 38-45.	3.2	123
92	Reply to "Breakpoints and Drug Exposure Are Inevitably Closely Linked― Antimicrobial Agents and Chemotherapy, 2015, 59, 1385-1385.	3.2	0
93	Special Populations and Pharmacogenetic Issues in Tuberculosis Drug Development and Clinical Research. Journal of Infectious Diseases, 2015, 211, S115-S125.	4.0	27
94	Pharmacokinetics of Efavirenz and Treatment of HIV-1 Among Pregnant Women With and Without Tuberculosis Coinfection. Journal of Infectious Diseases, 2015, 211, 197-205.	4.0	69
95	Pharmacokinetics and Safety of Ofloxacin in Children with Drug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 6073-6079.	3.2	17
96	Evaluation of an immunoassay for determination of plasma efavirenz concentrations in resourceâ€limited settings. Journal of the International AIDS Society, 2014, 17, 18979.	3.0	5
97	Pharmacokinetics of Ofloxacin and Levofloxacin for Prevention and Treatment of Multidrug-Resistant Tuberculosis in Children. Antimicrobial Agents and Chemotherapy, 2014, 58, 2948-2951.	3.2	47
98	Principles for designing future regimens for multidrug-resistant tuberculosis. Bulletin of the World Health Organization, 2014, 92, 68-74.	3.3	60
99	Isoniazid/acetylisoniazid urine concentrations: markers of adherence to isoniazid preventive therapy in children. International Journal of Tuberculosis and Lung Disease, 2014, 18, 528-530.	1.2	11
100	The pyrazinamide susceptibility breakpoint above which combination therapy fails. Journal of Antimicrobial Chemotherapy, 2014, 69, 2420-2425.	3.0	56
101	Randomized pharmacokinetic evaluation of different rifabutin doses in African HIV- infected tuberculosis patients on lopinavir/ritonavir-based antiretroviral therapy. BMC Pharmacology & Toxicology, 2014, 15, 61.	2.4	34
102	Nevirapine Concentrations in Preterm and Low Birth Weight HIV-Exposed Infants. Pediatric Infectious Disease Journal, 2014, 33, 1231-1233.	2.0	16
103	Moxifloxacin Population Pharmacokinetics and Model-Based Comparison of Efficacy between Moxifloxacin and Ofloxacin in African Patients. Antimicrobial Agents and Chemotherapy, 2014, 58, 503-510.	3.2	38
104	Nutritional Supplementation Increases Rifampin Exposure among Tuberculosis Patients Coinfected with HIV. Antimicrobial Agents and Chemotherapy, 2014, 58, 3468-3474.	3.2	51
105	Sex differences in responses to antiretroviral treatment in South African HIV-infected children on ritonavir-boosted lopinavir- and nevirapine-based treatment. BMC Pediatrics, 2014, 14, 39.	1.7	20
106	High-Dose Rifapentine with Moxifloxacin for Pulmonary Tuberculosis. New England Journal of Medicine, 2014, 371, 1599-1608.	27.0	383
107	Enabling the genomic revolution in Africa. Science, 2014, 344, 1346-1348.	12.6	361
108	Redefining Multidrug-Resistant Tuberculosis Based on Clinical Response to Combination Therapy. Antimicrobial Agents and Chemotherapy, 2014, 58, 6111-6115.	3.2	51

#	Article	IF	CITATIONS
109	Population pharmacokinetics of rifampicin, pyrazinamide and isoniazid in children with tuberculosis: in silico evaluation of currently recommended doses. Journal of Antimicrobial Chemotherapy, 2014, 69, 1339-1349.	3.0	53
110	Plasma Lopinavir Concentrations Predict Virological Failure in a Cohort of South African Children Initiating a Protease-Inhibitor-Based Regimen. Antiviral Therapy, 2014, 19, 399-406.	1.0	11
111	Serum Drug Concentrations Predictive of Pulmonary Tuberculosis Outcomes. Journal of Infectious Diseases, 2013, 208, 1464-1473.	4.0	378
112	Requirements for the clinical evaluation of new anti-tuberculosis agents in children. International Journal of Tuberculosis and Lung Disease, 2013, 17, 794-799.	1.2	16
113	The pharmacokinetics of nevirapine when given with isoniazid in South African HIV-infected individuals [Short communication]. International Journal of Tuberculosis and Lung Disease, 2013, 17, 333-335.	1.2	13
114	A Time-to-Event Pharmacodynamic Model Describing Treatment Response in Patients with Pulmonary Tuberculosis Using Days to Positivity in Automated Liquid Mycobacterial Culture. Antimicrobial Agents and Chemotherapy, 2013, 57, 789-795.	3.2	34
115	Evaluation of Initial and Steady-State Gatifloxacin Pharmacokinetics and Dose in Pulmonary Tuberculosis Patients by Using Monte Carlo Simulations. Antimicrobial Agents and Chemotherapy, 2013, 57, 4164-4171.	3.2	14
116	Modelâ€based evaluation of the pharmacokinetic differences between adults and children for lopinavir and ritonavir in combination with rifampicin. British Journal of Clinical Pharmacology, 2013, 76, 741-751.	2.4	12
117	Management of HIV-associated tuberculosis in resource-limited settings: a state-of-the-art review. BMC Medicine, 2013, 11, 253.	5.5	48
118	Population Pharmacokinetics of Lopinavir and Ritonavir in Combination with Rifampicin-Based Antitubercular Treatment in HIV-Infected Children. Antiviral Therapy, 2012, 17, 25-33.	1.0	22
119	Population Pharmacokinetics and Pharmacodynamics of Ofloxacin in South African Patients with Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 3857-3863.	3.2	32
120	Population Pharmacokinetic Model for Adherence Evaluation Using Lamivudine Concentration Monitoring. Therapeutic Drug Monitoring, 2012, 34, 481-484.	2.0	10
121	A Semimechanistic Pharmacokinetic-Enzyme Turnover Model for Rifampin Autoinduction in Adult Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2012, 56, 2091-2098.	3.2	77
122	Reduced Antituberculosis Drug Concentrations in HIV-Infected Patients Who Are Men or Have Low Weight: Implications for International Dosing Guidelines. Antimicrobial Agents and Chemotherapy, 2012, 56, 3232-3238.	3.2	91
123	Moxifloxacin Population Pharmacokinetics in Patients with Pulmonary Tuberculosis and the Effect of Intermittent High-Dose Rifapentine. Antimicrobial Agents and Chemotherapy, 2012, 56, 4471-4473.	3.2	30
124	Pharmacokinetics of nevirapine in HIV-infected children under 3 years on rifampicin-based antituberculosis treatment. Aids, 2012, 26, 1523-1528.	2.2	24
125	The Safety, Effectiveness and Concentrations of Adjusted Lopinavir/Ritonavir in HIV-Infected Adults on Rifampicin-Based Antitubercular Therapy. PLoS ONE, 2012, 7, e32173.	2.5	29
126	Paediatric use of second-line anti-tuberculosis agents: A review. Tuberculosis, 2012, 92, 9-17.	1.9	56

#	Article	IF	CITATIONS
127	Modelâ€based approach to dose optimization of lopinavir/ritonavir when coâ€administered with rifampicin. British Journal of Clinical Pharmacology, 2012, 73, 758-767.	2.4	20
128	Chapter 19: Interactions between Antituberculosis and Antiretroviral Agents. Progress in Respiratory Research, 2011, , 191-202.	0.1	5
129	Low Lopinavir Plasma or Hair Concentrations Explain Second-Line Protease Inhibitor Failures in a Resource-Limited Setting. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, 333-339.	2.1	101
130	PYRAZINAMIDE PLASMA CONCENTRATIONS IN YOUNG CHILDREN WITH TUBERCULOSIS. Pediatric Infectious Disease Journal, 2011, 30, 262-265.	2.0	18
131	Lopinavir Exposure is Insufficient in Children Given Double Doses of Lopinavir/Ritonavir during Rifampicin-Based Treatment for Tuberculosis. Antiviral Therapy, 2011, 16, 417-421.	1.0	53
132	Variability in the population pharmacokinetics of isoniazid in South African tuberculosis patients. British Journal of Clinical Pharmacology, 2011, 72, 51-62.	2.4	90
133	Pharmacokinetics of Lopinavir in HIV-Infected Adults Receiving Rifampin with Adjusted Doses of Lopinavir-Ritonavir Tablets. Antimicrobial Agents and Chemotherapy, 2011, 55, 3195-3200.	3.2	49
134	The <i>SLCO1B1</i> rs4149032 Polymorphism Is Highly Prevalent in South Africans and Is Associated with Reduced Rifampin Concentrations: Dosing Implications. Antimicrobial Agents and Chemotherapy, 2011, 55, 4122-4127.	3.2	130
135	Population Pharmacokinetics of Ethambutol in South African Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2011, 55, 4230-4237.	3.2	46
136	Population pharmacokinetics of lopinavir in combination with rifampicin-based antitubercular treatment in HIV-infected South African children. European Journal of Clinical Pharmacology, 2010, 66, 1017-1023.	1.9	23
137	Clinical deterioration during antituberculosis treatment in Africa: Incidence, causes and risk factors. BMC Infectious Diseases, 2010, 10, 83.	2.9	24
138	Effects of Four Different Meal Types on the Population Pharmacokinetics of Single-Dose Rifapentine in Healthy Male Volunteers. Antimicrobial Agents and Chemotherapy, 2010, 54, 3390-3394.	3.2	35
139	Global tuberculosis drug development pipeline: the need and the reality. Lancet, The, 2010, 375, 2100-2109.	13.7	319
140	Isoniazid Plasma Concentrations in a Cohort of South African Children with Tuberculosis: Implications for International Pediatric Dosing Guidelines. Clinical Infectious Diseases, 2009, 48, 1547-1553.	5.8	125
141	Rifampin pharmacokinetics in children, with and without human immunodeficiency virus infection, hospitalized for the management of severe forms of tuberculosis. BMC Medicine, 2009, 7, 19.	5.5	73
142	Population pharmacokinetics of nevirapine in combination with rifampicin-based short course chemotherapy in HIV- and tuberculosis-infected South African patients. European Journal of Clinical Pharmacology, 2009, 65, 71-80.	1.9	30
143	Effect of rifampicin-based antitubercular therapy and the cytochrome P450 2B6 516G>T polymorphism on efavirenz concentrations in adults in South Africa. Antiviral Therapy, 2009, 14, 687-95.	1.0	40
144	Effect of rifampicin-based antitubercular therapy and the cytochrome P450 2B6 516G>T polymorphism on efavirenz concentrations in adults in South Africa. Antiviral Therapy, 2009, 14, 687-695.	1.0	72

#	Article	IF	CITATIONS
145	Population Pharmacokinetics of Rifampin in Pulmonary Tuberculosis Patients, Including a Semimechanistic Model To Describe Variable Absorption. Antimicrobial Agents and Chemotherapy, 2008, 52, 2138-2148.	3.2	129
146	Complications of Antiretroviral Therapy in Patients with Tuberculosis: Drug Interactions, Toxicity, and Immune Reconstitution Inflammatory Syndrome. Journal of Infectious Diseases, 2007, 196, S63-S75.	4.0	190
147	Early Bactericidal Activity of High-Dose Rifampin in Patients with Pulmonary Tuberculosis Evidenced by Positive Sputum Smears. Antimicrobial Agents and Chemotherapy, 2007, 51, 2994-2996.	3.2	183
148	Effect of rifampicin-based antitubercular therapy on nevirapine plasma concentrations in South African adults with HIV-associated tuberculosis. Journal of Antimicrobial Chemotherapy, 2007, 61, 389-393.	3.0	72
149	Elevated gatifloxacin and reduced rifampicin concentrations in a single-dose interaction study amongst healthy volunteers. Journal of Antimicrobial Chemotherapy, 2007, 60, 1398-1401.	3.0	26
150	Combined therapy for tuberculosis and HIV-1: the challenge for drug discovery. Drug Discovery Today, 2007, 12, 980-989.	6.4	35
151	Rifampin levels, interferon-gamma release and outcome in complicated pulmonary tuberculosis. Tuberculosis, 2007, 87, 557-564.	1.9	14
152	Determinants of Rifampin, Isoniazid, Pyrazinamide, and Ethambutol Pharmacokinetics in a Cohort of Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2006, 50, 1170-1177.	3.2	222
153	Variability in the population pharmacokinetics of pyrazinamide in South African tuberculosis patients. European Journal of Clinical Pharmacology, 2006, 62, 727-735.	1.9	69
154	Population Pharmacokinetics of Artesunate and Dihydroartemisinin following Intra-Rectal Dosing of Artesunate in Malaria Patients. PLoS Medicine, 2006, 3, e444.	8.4	59
155	The Early Bactericidal Activities of Rifampin and Rifapentine in Pulmonary Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 128-135.	5.6	102
156	Population Pharmacokinetics of Rifapentine and Its Primary Desacetyl Metabolite in South African Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2005, 49, 4429-4436.	3.2	14
157	A comparison of the population pharmacokinetics of rifampicin, isoniazid and pyrazinamide between hospitalized and non-hospitalized tuberculosis patients with or without HIV. Wellcome Open Research, 0, 7, 72.	1.8	0
158	Pharmacokinetics of standard versus high-dose isoniazid for treatment of multidrug-resistant tuberculosis. Journal of Antimicrobial Chemotherapy, 0, , .	3.0	3