Roland Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2865327/publications.pdf

Version: 2024-02-01

323 papers

31,119 citations

5782 84 h-index 166 g-index

336 all docs

336 docs citations

336 times ranked 28323 citing authors

#	Article	IF	CITATIONS
1	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	13.7	2,400
2	IMMUNOLOGY OF MULTIPLE SCLEROSIS. Annual Review of Immunology, 2005, 23, 683-747.	9 . 5	1,982
3	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	9.4	1,213
4	Immunological Aspects of Demyelinating Diseases. Annual Review of Immunology, 1992, 10, 153-187.	9.5	984
5	Multiple sclerosis: a complicated picture of autoimmunity. Nature Immunology, 2007, 8, 913-919.	7.0	896
6	Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: Results of a phase II clinical trial with an altered peptide ligand. Nature Medicine, 2000, 6, 1167-1175.	15.2	783
7	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	6.0	710
8	Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2RÂ-targeted therapy (daclizumab) in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5941-5946.	3. 3	588
9	Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. Journal of Experimental Medicine, 2005, 201, 805-816.	4.2	446
10	TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nature Immunology, 2003, 4, 248-254.	7.0	426
11	The OSCAR-IB Consensus Criteria for Retinal OCT Quality Assessment. PLoS ONE, 2012, 7, e34823.	1.1	423
12	Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature, 1996, 379, 343-346.	13.7	382
13	Distinct and Nonredundant In Vivo Functions of IFNAR on Myeloid Cells Limit Autoimmunity in the Central Nervous System. Immunity, 2008, 28, 675-686.	6.6	352
14	Using gadolinium-enhanced magnetic resonance imaging lesions to monitor disease activity in multiple sclerosis. Annals of Neurology, 1992, 32, 758-766.	2.8	351
15	Memory B Cells Activate Brain-Homing, Autoreactive CD4+ T Cells in Multiple Sclerosis. Cell, 2018, 175, 85-100.e23.	13.5	350
16	Immunological Aspects of Experimental Allergic Encephalomyelitis and Multiple Sclerosis. Critical Reviews in Clinical Laboratory Sciences, 1995, 32, 121-182.	2.7	344
17	The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nature Medicine, 1995, 1, 244-248.	15.2	338
18	Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon \hat{A} . Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8705-8708.	3.3	326

#	Article	IF	CITATIONS
19	Exploring the origins of grey matter damage in multiple sclerosis. Nature Reviews Neuroscience, 2015, 16, 147-158.	4.9	317
20	Identification of High Potency Microbial and Self Ligands for a Human Autoreactive Class Il–restricted T Cell Clone. Journal of Experimental Medicine, 1997, 185, 1651-1660.	4.2	313
21	A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis Journal of Experimental Medicine, 1991, 173, 19-24.	4.2	287
22	Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. Journal of Immunology, 1990, 145, 540-8.	0.4	273
23	Development of biomarkers in multiple sclerosis. Brain, 2004, 127, 1463-1478.	3.7	266
24	Clinical worsening in multiple sclerosis is associated with increased frequency and area of gadopentetate dimeglumine-enhancing magnetic resonance imaging lesions. Annals of Neurology, 1993, 33, 480-489.	2.8	265
25	Antigen-Specific Tolerance by Autologous Myelin Peptide–Coupled Cells: A Phase 1 Trial in Multiple Sclerosis. Science Translational Medicine, 2013, 5, 188ra75.	5.8	262
26	CARE-LASS (calcein-release-assay), an improved fluorescence-based test system to measure cytotoxic T lymphocyte activity. Journal of Immunological Methods, 1994, 172, 227-239.	0.6	261
27	Antigen presentation mediated by recycling of surface HLA-DR molecules. Nature, 1995, 375, 603-606.	13.7	260
28	Haematopoietic SCT in severe autoimmune diseases: updated guidelines of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplantation, 2012, 47, 770-790.	1.3	256
29	EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN- \hat{l}^3 and IL-2. Journal of Experimental Medicine, 2008, 205, 1763-1773.	4.2	244
30	Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nature Biotechnology, 2003, 21, 1033-1039.	9.4	242
31	Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain, 2010, 133, 1082-1093.	3.7	240
32	T Lymphocyte Priming by Neutrophil Extracellular Traps Links Innate and Adaptive Immune Responses. Journal of Immunology, 2012, 188, 3150-3159.	0.4	236
33	Multiple Sclerosis: Deeper Understanding of Its Pathogenesis Reveals New Targets for Therapy. Annual Review of Neuroscience, 2002, 25, 491-505.	5.0	229
34	Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nature Medicine, 1999, 5, 1375-1382.	15.2	216
35	Expansion and Functional Relevance of High-Avidity Myelin-Specific CD4+ T Cells in Multiple Sclerosis. Journal of Immunology, 2004, 172, 3893-3904.	0.4	208
36	Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nature Reviews Neurology, 2017, 13, 391-405.	4.9	207

#	Article	IF	Citations
37	Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain, 2006, 129, 1493-1506.	3.7	204
38	CD4+CD28– costimulation-independent T cells in multiple sclerosis. Journal of Clinical Investigation, 2001, 108, 1185-1194.	3.9	196
39	Gene expression profile in multiple sclerosis patients and healthy controls: identifying pathways relevant to disease. Human Molecular Genetics, 2003, 12, 2191-2199.	1.4	191
40	Neutrophils in multiple sclerosis are characterized by a primed phenotype. Journal of Neuroimmunology, 2012, 242, 60-71.	1.1	190
41	A type I interferon signature in monocytes is associated with poor response to interferon- \hat{l}^2 in multiple sclerosis. Brain, 2009, 132, 3353-3365.	3.7	186
42	Immunology of Multiple Sclerosis. Seminars in Neurology, 2016, 36, 115-127.	0.5	177
43	Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain, 2013, 136, 2888-2903.	3.7	174
44	Complex immunomodulatory effects of interferon- \hat{l}^2 in multiple sclerosis include the upregulation of T helper 1-associated marker genes. Annals of Neurology, 2001, 50, 349-357.	2.8	171
45	Expression profiling identifies responder and nonâ€responder phenotypes to interferonâ€Î² in multiple sclerosis. Brain, 2003, 126, 1419-1429.	3.7	171
46	Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO Journal, 2005, 24, 2968-2979.	3.5	171
47	Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls. American Journal of Human Genetics, 2013, 92, 854-865.	2.6	164
48	Effect of Anti-CD25 Antibody Daclizumab in the Inhibition of Inflammation and Stabilization of Disease Progression in Multiple Sclerosis. Archives of Neurology, 2009, 66, 483-9.	4.9	159
49	Mechanisms of immunomodulation by glatiramer acetate. Neurology, 2000, 55, 1704-1714.	1.5	155
50	Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis. Annals of Neurology, 2004, 55, 654-659.	2.8	155
51	Infectious causes of multiple sclerosis. Lancet Neurology, The, 2006, 5, 887-894.	4.9	151
52	Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. Journal of Immunology, 1994, 153, 1665-73.	0.4	143
53	Targeting Dipeptidyl Peptidase IV (CD26) Suppresses Autoimmune Encephalomyelitis and Up-Regulates TGF-Î ² 1 Secretion In Vivo. Journal of Immunology, 2001, 166, 2041-2048.	0.4	141
54	Application of support vector machines for T-cell epitopes prediction. Bioinformatics, 2003, 19, 1978-1984.	1.8	136

#	Article	IF	CITATIONS
55	Skewed T-cell receptor repertoire in genetically identical twins correlates with multiple sclerosis. Nature, 1993, 364, 243-247.	13.7	135
56	Crystal Structure of a Superantigen Bound to the High-Affinity, Zinc-Dependent Site on MHC Class II. Immunity, 2001, 14, 93-104.	6.6	134
57	Probing degeneracy in T-cell recognition using peptide combinatorial libraries. Trends in Immunology, 1998, 19, 163-168.	7.5	133
58	The value of animal models for drug development in multiple sclerosis. Brain, 2006, 129, 1940-1952.	3.7	133
59	HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis. Cell, 2020, 183, 1264-1281.e20.	13.5	133
60	Structural basis for the binding of an immunodominant peptide from myelin basic protein in different registers by two HLA-DR2 proteins. Journal of Molecular Biology, 2000, 304, 177-188.	2.0	131
61	Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (IACIE). Bone Marrow Transplantation, 2020, 55, 283-306.	1.3	128
62	HLA Ligand Atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy., 2021, 9, e002071.		126
63	T Helper 1 (TH1) Functional Phenotype of Human Myelin Basic Protein-Specific T Lymphocytes. Autoimmunity, 1993, 15, 137-143.	1.2	124
64	Relationships among TCR ligand potency, thresholds for effector function elicitation, and the quality of early signaling events in human T cells. Journal of Immunology, 1998, 160, 5807-14.	0.4	119
65	Diversity in fine specificity and T cell receptor usage of the human CD4+ cytotoxic T cell response specific for the immunodominant myelin basic protein peptide 87-106. Journal of Immunology, 1992, 148, 1359-66.	0.4	117
66	Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.	13.5	115
67	Borrelia burgdorferi?specific and autoreactive T-cell lines from cerebrospinal fluid in lyme radiculomyelitis. Annals of Neurology, 1988, 24, 509-516.	2.8	114
68	Retinal Damage in Multiple Sclerosis Disease Subtypes Measured by High-Resolution Optical Coherence Tomography. Multiple Sclerosis International, 2012, 2012, 1-10.	0.4	111
69	CD4+CD28– costimulation-independent T cells in multiple sclerosis. Journal of Clinical Investigation, 2001, 108, 1185-1194.	3.9	109
70	Genome-wide Scan of 500Â000 Single-Nucleotide Polymorphisms Among Responders and Nonresponders to Interferon Beta Therapy in Multiple Sclerosis. Archives of Neurology, 2009, 66, 972-8.	4.9	104
71	Predictable TCR antigen recognition based on peptide scans leads to the identification of agonist ligands with no sequence homology. Journal of Immunology, 1998, 160, 3631-6.	0.4	103
72	Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Multiple Sclerosis Journal, 2001, 7, 209-219.	1.4	102

#	Article	IF	Citations
73	Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis. European Journal of Immunology, 2016, 46, 2078-2090.	1.6	101
74	Exploring immunological specificity using synthetic peptide combinatorial libraries. Current Opinion in Immunology, $1999, 11, 193-202$.	2.4	100
75	Identification of a Novel Risk Locus for Multiple Sclerosis at 13q31.3 by a Pooled Genome-Wide Scan of 500,000 Single Nucleotide Polymorphisms. PLoS ONE, 2008, 3, e3490.	1.1	99
76	HTLV-I-specific cytotoxic T lymphocytes in the cerebrospinal fluid of patients with HTLV-I-associated neurological disease. Annals of Neurology, 1992, 32, 651-657.	2.8	98
77	Molecular mimicry and multiple sclerosis: Degenerate T-cell recognition and the induction of autoimmunity. Annals of Neurology, 1999, 45, 559-567.	2.8	98
78	Combinatorial Peptide Libraries and Biometric Score Matrices Permit the Quantitative Analysis of Specific and Degenerate Interactions Between Clonotypic TCR and MHC Peptide Ligands. Journal of Immunology, 2001, 167, 2130-2141.	0.4	97
79	Epstein-Barr Virus: Environmental Trigger of Multiple Sclerosis?. Journal of Virology, 2007, 81, 6777-6784.	1.5	97
80	Differential activation of human autoreactive T cell clones by altered peptide ligands derived from myelin basic protein peptide (87–99). European Journal of Immunology, 1996, 26, 2624-2634.	1.6	96
81	Therapeutic Potential of Phosphodiesterase-4 and -3 Inhibitors in Th1-Mediated Autoimmune Diseases. Journal of Immunology, 2000, 164, 1117-1124.	0.4	96
82	Natalizumab treatment perturbs memory†and marginal zoneâ€like Bâ€cell homing in secondary lymphoid organs in multiple sclerosis. European Journal of Immunology, 2012, 42, 790-798.	1.6	95
83	Immunodominance of a low-affinity major histocompatibility complex-binding myelin basic protein epitope (residues 111-129) in HLA-DR4 (B1*0401) subjects is associated with a restricted T cell receptor repertoire Journal of Clinical Investigation, 1997, 100, 339-349.	3.9	93
84	Intrathecal effects of daclizumab treatment of multiple sclerosis. Neurology, 2011, 77, 1877-1886.	1.5	91
85	A prospective, randomized, controlled trial of autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: a position paper. Multiple Sclerosis Journal, 2012, 18, 825-834.	1.4	89
86	Myelin-Associated Oligodendrocytic Basic Protein: Identification of an Encephalitogenic Epitope and Association with Multiple Sclerosis. Journal of Immunology, 2000, 164, 1103-1109.	0.4	82
87	TGF- \hat{l}^2 1-Mediated Control of Central Nervous System Inflammation and Autoimmunity through the Inhibitory Receptor CD26. Journal of Immunology, 2007, 178, 4632-4640.	0.4	82
88	Copolymer-1-induced inhibition of antigen-specific T cell activation: interference with antigen presentation. Journal of Neuroimmunology, 1992, 37, 75-84.	1.1	79
89	Getting specific: monoclonal antibodies in multiple sclerosis. Lancet Neurology, The, 2008, 7, 538-547.	4.9	78
90	Central role of JC virus-specific CD4+ lymphocytes in progressive multi-focal leucoencephalopathy-immune reconstitution inflammatory syndrome. Brain, 2011, 134, 2687-2702.	3.7	78

#	Article	IF	CITATIONS
91	Dendritic cells signal T cells in the absence of exogenous antigen. Nature Immunology, 2001, 2, 932-938.	7.0	74
92	Molecular tracking of antigen-specific T cell clones in neurological immune-mediated disorders. Brain, 2003, 126, 20-31.	3.7	74
93	Increased serum levels of soluble CD95 (APO-1/Fas) in relapsing-remitting multiple sclerosis. Annals of Neurology, 1998, 43, 116-120.	2.8	73
94	Recognition of Conserved Amino Acid Motifs of Common Viruses and Its Role in Autoimmunity. PLoS Pathogens, 2005, 1 , e41.	2.1	73
95	Therapeutic potential of phosphodiesterase type 4 inhibition in chronic autoimmune demyelinating disease. Journal of Neuroimmunology, 1997, 79, 54-61.	1.1	71
96	GDP- <scp> </scp> -fucose synthase is a CD4 ⁺ T cell–specific autoantigen in DRB3*02:02 patients with multiple sclerosis. Science Translational Medicine, 2018, 10, .	5.8	71
97	Preferential expansion of autoreactive T lymphocytes from the memory T-cell pool by IL-7. Journal of Neuroimmunology, 1999, 100, 115-123.	1.1	70
98	Minimal peptide length requirements for CD4+ T cell clonesâ€"implications for molecular mimicry and T cell survival. International Immunology, 2000, 12, 375-383.	1.8	70
99	Functional HLA-DM on the surface of B cells and immature dendritic cells. EMBO Journal, 2000, 19, 1241-1251.	3 . 5	69
100	Anti-CD25 (daclizumab) monoclonal antibody therapy in relapsing–remitting multiple sclerosis. Clinical Immunology, 2012, 142, 9-14.	1.4	69
101	Immunotherapy of multiple sclerosis: Where are we? Where should we go?. Nature Immunology, 2001, 2, 785-788.	7.0	68
102	MRI as a marker for disease heterogeneity in multiple sclerosis. Neurology, 2005, 65, 1071-1076.	1.5	68
103	Structure of a TCR with high affinity for self-antigen reveals basis for escape from negative selection. EMBO Journal, 2011, 30, 1137-1148.	3 . 5	68
104	HLA-DRB5*0101 and -DRB1*1501 expression in the multiple sclerosis-associated HLA-DR15 haplotype. Journal of Neuroimmunology, 2005, 167, 108-119.	1.1	67
105	Genomics in multiple sclerosisâ€"Current state and future directions. Journal of Neuroimmunology, 2007, 187, 1-8.	1.1	66
106	Human autoreactive CD4+ T cell clones use perforin- or Fas/Fas ligand-mediated pathways for target cell lysis. Journal of Immunology, 1997, 158, 2756-61.	0.4	66
107	Contribution of Individual Amino Acids Within MHC Molecule or Antigenic Peptide to TCR Ligand Potency. Journal of Immunology, 2000, 164, 861-871.	0.4	64
108	Treating Progressive Multifocal Leukoencephalopathy With Interleukin 7 and Vaccination With JC Virus Capsid Protein VP1. Clinical Infectious Diseases, 2014, 59, 1588-1592.	2.9	64

#	Article	lF	CITATIONS
109	JC polyomavirus mutants escape antibody-mediated neutralization. Science Translational Medicine, 2015, 7, 306ra151.	5.8	64
110	Human CD4+ T cell subsets differ in their abilities to cross endothelial and epithelial brain barriers in vitro. Fluids and Barriers of the CNS, 2020, 17, 3.	2.4	64
111	Interferon- \hat{I}^2 interferes with the proliferation but not with the cytokine secretion of myelin basic protein-specific, T-helper type 1 lymphocytes. Neurology, 1997, 49, 385-392.	1.5	62
112	Human Autoreactive CD4+ T Cells from Naive CD45RA+ and Memory CD45RO+ Subsets Differ with Respect to Epitope Specificity and Functional Antigen Avidity. Journal of Immunology, 2000, 164, 5474-5481.	0.4	62
113	Natural triterpenes modulate immuneâ€inflammatory markers of experimental autoimmune encephalomyelitis: therapeutic implications for multiple sclerosis. British Journal of Pharmacology, 2012, 166, 1708-1723.	2.7	62
114	Persistent intrathecal secretion of oligoclonal, Borrelia burgdorferi-specific IgG in chronic meningoradiculomyelitis. Journal of Neurology, 1988, 235, 229-233.	1.8	61
115	Molecular Mimicry and Antigen-Specific T Cell Responses in Multiple Sclerosis and Chronic CNS Lyme Disease. Journal of Autoimmunity, 2001, 16, 187-192.	3.0	61
116	Gender differences in circulating levels of neutrophil extracellular traps in serum of multiple sclerosis patients. Journal of Neuroimmunology, 2013, 261, 108-119.	1.1	60
117	Inhibitors of dipeptidyl peptidase IV/CD26 suppress activation of human MBP-specific CD4+ T cell clones. Journal of Neuroimmunology, 1998, 87, 203-209.	1.1	59
118	Antigen-specific immunomodulation via altered peptide ligands. Journal of Molecular Medicine, 2001, 79, 552-565.	1.7	59
119	Neurological manifestations of coronavirus infections – a systematic review. Annals of Clinical and Translational Neurology, 2020, 7, 2057-2071.	1.7	59
120	T cell response to myelin basic protein in the context of the multiple sclerosis-associated HLA-DR15 haplotype: peptide binding, immunodominance and effector functions of T cells. Journal of Neuroimmunology, 1997, 77, 195-203.	1.1	58
121	Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain, 2011, 134, e193-e193.	3.7	58
122	The good and the bad of neuroinflammation in multiple sclerosis. Handbook of Clinical Neurology / Edited By PJ Vinken and G W Bruyn, 2014, 122, 59-87.	1.0	58
123	A powerful combination: the use of positional scanning libraries and biometrical analysis to identify cross-reactive T cell epitopes. Molecular Immunology, 2004, 40, 1063-1074.	1.0	56
124	Hematopoietic Stem Cell Transplantation for Multiple Sclerosis. Archives of Neurology, 2005, 62, 860-4.	4.9	56
125	Feasibility of Allogeneic Hematopoietic Stem Cell Transplantation for Autoimmune Disease: Position Statement from a National Institute of Allergy and Infectious Diseases and National Cancer Institute–Sponsored International Workshop, Bethesda, MD, March 12 and 13, 2005. Biology of Blood and Marrow Transplantation. 2005. 11. 862-870.	2.0	56
126	Serum CD95 of relapsing remitting multiple sclerosis patients protects from CD95-mediated apoptosis. Journal of Neuroimmunology, 1998, 86, 151-154.	1.1	54

#	Article	IF	Citations
127	Loss of retinal nerve fibre layer axons indicates white but not grey matter damage in early multiple sclerosis. European Journal of Neurology, 2013, 20, 803-811.	1.7	53
128	Attenuated immune control of Epstein–Barr virus in humanized mice is associated with the multiple sclerosis risk factor HLAâ€DR15. European Journal of Immunology, 2021, 51, 64-75.	1.6	53
129	Modifications of peptide ligands enhancing T cell responsiveness imply large numbers of stimulatory ligands for autoreactive T cells. Journal of Immunology, 1997, 158, 3746-52.	0.4	52
130	High level of cross-reactivity in influenza virus hemagglutinin-specific CD4+ T-cell response: Implications for the initiation of autoimmune response in multiple sclerosis. Journal of Neuroimmunology, 2005, 169, 31-38.	1,1	50
131	Redundancy in Antigen-Presenting Function of the HLA-DR and -DQ Molecules in the Multiple Sclerosis-Associated HLA-DR2 Haplotype. Journal of Immunology, 2006, 176, 1951-1961.	0.4	49
132	Reactivation of herpesvirus under fingolimod: A case of severe herpes simplex encephalitis. Neurology, 2015, 84, 2377-2378.	1.5	49
133	Antigen-Specific Therapies in Multiple Sclerosis. International Reviews of Immunology, 2005, 24, 393-413.	1.5	48
134	Immunogenicity. I. Use of peptide libraries to identify epitopes that activate clonotypic CD4+ T cells and induce T cell responses to native peptide ligands. Journal of Immunology, 1999, 163, 6424-34.	0.4	48
135	Myelin basic protein-specific T-cell responses in identical twins discordant or concordant for multiple sclerosis. Annals of Neurology, 1993, 34, 524-535.	2.8	47
136	HLA-DR-restricted presentation of purified myelin basic protein is independent of intracellular processing. European Journal of Immunology, 1997, 27, 941-951.	1.6	47
137	Glatiramer acetate-reactive peripheral blood mononuclear cells respond to multiple myelin antigens with a Th2-biased phenotype. Journal of Neuroimmunology, 2003, 140, 163-171.	1.1	47
138	HLA-DR2a is the dominant restriction molecule for the cytotoxic T cell response to myelin basic protein in DR2Dw2 individuals. Journal of Immunology, 1990, 145, 2880-5.	0.4	47
139	Citrullineâ€containing myelin basic protein is recognized by Tâ€cell lines derived from multiple sclerosis patients and healthy individuals. Neurology, 1994, 44, 123-123.	1.5	46
140	Hematopoietic Stem Cell Transplantation for Multiple Sclerosis: Collaboration of the CIBMTR and EBMT to Facilitate International Clinical Studies. Biology of Blood and Marrow Transplantation, 2010, 16, 1076-1083.	2.0	46
141	Myelin Basic Protein-Specific TCR/HLA-DRB5*01:01 Transgenic Mice Support the Etiologic Role of DRB5*01:01 in Multiple Sclerosis. Journal of Immunology, 2012, 189, 2897-2908.	0.4	46
142	Autoantigens act as tissue-specific chemoattractants. Journal of Leukocyte Biology, 2005, 77, 854-861.	1.5	45
143	Molecular mimicry in multiple sclerosis. Autoimmunity, 2006, 39, 3-8.	1.2	45
144	Effects of Natalizumab Treatment on the Cerebrospinal Fluid Proteome of Multiple Sclerosis Patients. Journal of Proteome Research, 2013, 12, 1101-1107.	1.8	45

#	Article	IF	Citations
145	Central role of Th2/Tc2 lymphocytes in pattern <scp>II</scp> multiple sclerosis lesions. Annals of Clinical and Translational Neurology, 2015, 2, 875-893.	1.7	45
146	Human autoreactive and foreign antigen-specific T cells resist apoptosis induced by soluble recombinant CD95 ligand. Journal of Immunology, 1997, 159, 2108-15.	0.4	45
147	Sustained immunological effects of Glatiramer acetate in patients with multiple sclerosis treated for over 6 years. Journal of the Neurological Sciences, 2002, 201, 71-77.	0.3	44
148	T cell response to 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) in multiple sclerosis patients. Journal of Neuroimmunology, 2002, 130, 233-242.	1.1	44
149	Effect of Dextran on Factor VIII/von Willebrand Factor Structure and Function. Thrombosis and Haemostasis, 1985, 54, 697-699.	1.8	44
150	Rapid identification of local T cell expansion in inflammatory organ diseases by flow cytometric T cell receptor $\hat{V^2}$ analysis. Journal of Immunological Methods, 2000, 246, 131-143.	0.6	42
151	MAPK pathway and B cells overactivation in multiple sclerosis revealed by phosphoproteomics and genomic analysis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9671-9676.	3.3	42
152	Cytokine phenotype of human autoreactive T cell clones specific for the immunodominant myelin basic protein peptide (83-99)., 1996, 45, 852-862.		41
153	Use of combinatorial peptide libraries for T-cell epitope mapping. Methods, 2003, 29, 236-247.	1.9	41
154	JC virus granule cell neuronopathy and GCN–IRIS under natalizumab treatment. Annals of Neurology, 2013, 74, 622-626.	2.8	41
155	Homologies between T cell receptor junctional sequences unique to multiple sclerosis and T cells mediating experimental allergic encephalomyelitis Journal of Clinical Investigation, 1994, 94, 105-109.	3.9	41
156	Human T-cell response to myelin basic protein peptide (83-99): Extensive heterogeneity in antigen recognition, function, and phenotype. Neurology, 1997, 49, 1116-1126.	1.5	40
157	Treatment with the phosphodiesterase type-4 inhibitor rolipram fails to inhibit bloodâ€"brain barrier disruption in multiple sclerosis. Multiple Sclerosis Journal, 2009, 15, 1206-1214.	1.4	40
158	HLA-DR15-derived self-peptides are involved in increased autologous T cell proliferation in multiple sclerosis. Brain, 2013, 136, 1783-1798.	3.7	40
159	Mechanisms of immune escape in central nervous system infection with neurotropic <scp>JC</scp> virus variant. Annals of Neurology, 2016, 79, 404-418.	2.8	40
160	A novel population of CD4+CD56+ myelin-reactive T cells lyses target cells expressing CD56/neural cell adhesion molecule. Journal of Immunology, 1996, 157, 679-88.	0.4	40
161	Unique Clinical and Pathological Features in HLA-DRB1*0401–restricted MBP 111–129–specific Humanized TCR Transgenic Mice. Journal of Experimental Medicine, 2004, 200, 223-234.	4.2	39
162	Restoring immune tolerance in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e277.	3.1	39

#	Article	IF	Citations
163	Nogo-A antibodies enhance axonal repair and remyelination in neuro-inflammatory and demyelinating pathology. Acta Neuropathologica, 2017, 134, 423-440.	3.9	39
164	Selected cytotoxic T lymphocytes with high specificity for HTLV-I in cerebrospinal fluid from a HAM/TSP patient. Journal of NeuroVirology, 2002, 8, 53-57.	1.0	38
165	T-cell clones persisting in the circulation after autologous hematopoietic SCT are undetectable in the peripheral CD34+ selected graft. Bone Marrow Transplantation, 2010, 45, 325-331.	1.3	38
166	Daclizumab (anti-CD25) in multiple sclerosis. Experimental Neurology, 2014, 262, 44-51.	2.0	38
167	Broadly neutralizing human monoclonal JC polyomavirus VP1–specific antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy. Science Translational Medicine, 2015, 7, 306ra150.	5.8	38
168	Hsp70 Regulates Immune Response in Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2014, 9, e105737.	1.1	38
169	Findings on T cell specificity revealed by synthetic combinatorial libraries. Journal of Immunological Methods, 2002, 267, 79-97.	0.6	37
170	Immunology of progressive multifocal leukoencephalopathy. Journal of NeuroVirology, 2015, 21, 614-622.	1.0	36
171	Restoring immune tolerance in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e276.	3.1	35
172	Differential expression of cyclic nucleotide phosphodiesterase 3 and 4 activities in human T cell clones specific for myelin basic protein. Journal of Immunology, 1997, 159, 1520-9.	0.4	35
173	Disease Progression After Bone Marrow Transplantation in a Model of Multiple Sclerosis Is Associated With Chronic Microglial and Glial Progenitor Response. Journal of Neuropathology and Experimental Neurology, 2007, 66, 637-649.	0.9	34
174	Phenotypic and functional complexity of brain-infiltrating T cells in Rasmussen encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e419.	3.1	34
175	New approaches to investigating heterogeneity in complex traits. Journal of Medical Genetics, 2003, 40, 553-559.	1.5	33
176	Dynamics and heterogeneity of brain damage in multiple sclerosis. PLoS Computational Biology, 2017, 13, e1005757.	1.5	33
177	Heterogeneity of T-cell receptor alpha-chain complementarity-determining region 3 in myelin basic protein-specific T cells increases with severity of multiple sclerosis Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5567-5571.	3.3	32
178	Antigen-specific tolerization approaches in multiple sclerosis. Expert Opinion on Investigational Drugs, 2014, 23, 9-20.	1.9	31
179	Nogo-A Antibodies for Progressive Multiple Sclerosis. CNS Drugs, 2017, 31, 187-198.	2.7	31
180	Brain Citrullination Patterns and T Cell Reactivity of Cerebrospinal Fluid-Derived CD4+ T Cells in Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 540.	2.2	31

#	Article	IF	Citations
181	Virus-specific and autoreactive T cell lines isolated from cerebrospinal fluid of a patient with chronic rubella panencephalitis. Journal of Neuroimmunology, 1989, 23, 1-10.	1.1	30
182	Borrelia burgdorferi myelitis presenting as a partial stiff man syndrome. Journal of Neurology, 1990, 237, 51-54.	1.8	30
183	2′,3′-cyclic nucleotide 3′-phosphodiesterase: a novel candidate autoantigen in demyelinating diseases. Journal of Neuroimmunology, 1997, 75, 28-34.	1.1	30
184	Sphingosine-1 Phosphate and Central Nervous System. Current Topics in Microbiology and Immunology, 2014, 378, 149-170.	0.7	30
185	Tocilizumab treatment in severe recurrent anti-MOG-associated optic neuritis. Neurology, 2019, 92, 765-767.	1.5	30
186	TCR Bias and HLA Cross-Restriction Are Strategies of Human Brain-Infiltrating JC Virus-Specific CD4+ T Cells during Viral Infection. Journal of Immunology, 2012, 189, 3618-3630.	0.4	29
187	Antigen-specific therapies in MS — Current concepts and novel approaches. Journal of the Neurological Sciences, 2008, 274, 18-22.	0.3	28
188	Experimental immunotherapies for multiple sclerosis. Seminars in Immunopathology, 1996, 18, 1-24.	4.0	27
189	Gender-Associated Differences of Perforin Polymorphisms in the Susceptibility to Multiple Sclerosis. Journal of Immunology, 2010, 185, 5392-5404.	0.4	27
190	Hematopoietic stem cell transplantation for multiple sclerosis: current status and future challenges. Current Opinion in Neurology, 2003, 16, 299-305.	1.8	26
191	Autologous Hematopoietic Stem Cell Transplantation as a Treatment Option for Aggressive Multiple Sclerosis. Current Treatment Options in Neurology, 2013, 15, 270-280.	0.7	26
192	A Multiple Sclerosis–Associated Variant of CBLB Links Genetic Risk with Type I IFN Function. Journal of Immunology, 2014, 193, 4439-4447.	0.4	26
193	Chemokines in chronic progressive neurological diseases: HTLV-1 associated myelopathy and multiple sclerosis. Journal of NeuroVirology, 1999, 5, 102-108.	1.0	25
194	Biomarkers in Multiple Sclerosis. Disease Markers, 2006, 22, 183-185.	0.6	25
195	The use of soluble synthetic peptide combinatorial libraries to determine antigen recognition of T cells. Chemical Biology and Drug Design, 1998, 52, 338-345.	1.2	24
196	IL7RA haplotype-associated alterations in cellular immune function and gene expression patterns in multiple sclerosis. Genes and Immunity, 2013, 14, 453-461.	2.2	24
197	Signaling networks in MS: A systems-based approach to developing new pharmacological therapies. Multiple Sclerosis Journal, 2015, 21, 138-146.	1.4	24
198	Detailed Characterization of T Cell Receptor Repertoires in Multiple Sclerosis Brain Lesions. Frontiers in Immunology, 2018, 9, 509.	2.2	24

#	Article	IF	CITATIONS
199	Increased HLA-DR expression and cortical demyelination in MS links with HLA-DR15. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	24
200	CD95 expression and CD95-mediated apoptosis of T cells in multiple sclerosis. Journal of Neuroimmunology, 1998, 81, 168-172.	1.1	23
201	Ligand motif of the autoimmune disease-associated mouse MHC class II molecule H2-As. European Journal of Immunology, 2001, 31, 551-562.	1.6	23
202	Hematopoietic stem cell transplantation for multiple sclerosis: current status and future challenges. Current Opinion in Neurology, 2003, 16, 299-305.	1.8	23
203	Humanized Anti-CD25 Antibody Treatment with Daclizumab in Multiple Sclerosis. Neurodegenerative Diseases, 2008, 5, 23-26.	0.8	23
204	A standardised frankincense extract reduces disease activity in relapsing-remitting multiple sclerosis (the SABA phase lla trial). Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 330-338.	0.9	23
205	Multiple sclerosis: doubling down on MHC. Trends in Genetics, 2021, 37, 784-797.	2.9	23
206	Interferon- \hat{l}^3 secretion by in vivo activated cytotoxic T lymphocytes from the blood and cerebrospinal fluid during mumps meningitis. Journal of Neuroimmunology, 1991, 33, 191-198.	1.1	22
207	Multiple sclerosis associated amino acids of polymorphic regions relevant for the HLA antigen binding are confined to HLA-DR2. Human Immunology, 2000, 61, 1021-1030.	1.2	22
208	Cerebrospinal Fluid-Infiltrating CD4 + T Cells Recognize Borrelia burgdorferi Lysine-Enriched Protein Domains and Central Nervous System Autoantigens in Early Lyme Encephalitis. Infection and Immunity, 2007, 75, 243-251.	1.0	22
209	Long-term safety and efficacy of natalizumab in relapsing-remitting multiple sclerosis: impact on quality of life. Patient Related Outcome Measures, 2014, 5, 25.	0.7	22
210	Placebo Cohorts in Phase-3 MS Treatment Trials – Predictors for On-Trial Disease Activity 1990-2010 Based on a Meta-Analysis and Individual Case Data. PLoS ONE, 2012, 7, e50347.	1.1	22
211	Compositional bias and mimicry toward the nonself proteome in immunodominant T cell epitopes of self and nonself antigens. FASEB Journal, 2000, 14, 431-438.	0.2	21
212	The initiation of the autoimmune response in multiple sclerosis. Clinical Neurology and Neurosurgery, 2004, 106, 218-222.	0.6	21
213	Sustained Efficacy of Natalizumab in the Treatment of Relapsing-Remitting Multiple Sclerosis Independent of Disease Activity and Disability at Baseline. Clinical Neuropharmacology, 2012, 35, 77-80.	0.2	21
214	Spotlight on anti-CD25: daclizumab in MS. International MS Journal, 2008, 15, 94-8.	0.3	21
215	Expression pattern of activation and adhesion molecules on peripheral blood CD4+ T-lymphocytes in relapsing-remitting multiple sclerosis patients: a serial analysis. Journal of Neuroimmunology, 1996, 66, 147-151.	1.1	20
216	Clonotypic analysis of cerebrospinal fluid T cells during disease exacerbation and remission in a patient with multiple sclerosis. Journal of Neuroimmunology, 2006, 171, 177-183.	1.1	20

#	Article	IF	Citations
217	Degenerate TCR recognition and dual DR2 restriction of autoreactive T cells: Implications for the initiation of the autoimmune response in multiple sclerosis. European Journal of Immunology, 2008, 38, 1297-1309.	1.6	20
218	Nogo receptor is involved in the adhesion of dendritic cells to myelin. Journal of Neuroinflammation, 2011, 8, 113.	3.1	20
219	T Cell Epitope Mapping of JC Polyoma Virus-Encoded Proteome Reveals Reduced T Cell Responses in HLA-DRB1*04:01 ⁺ Donors. Journal of Virology, 2013, 87, 3393-3408.	1.5	20
220	Antigen-Specific Immune Tolerance in Multiple Sclerosisâ€"Promising Approaches and How to Bring Them to Patients. Frontiers in Immunology, 2021, 12, 640935.	2.2	20
221	Cystatin F is a biomarker of prion pathogenesis in mice. PLoS ONE, 2017, 12, e0171923.	1.1	20
222	The immunopathogenesis of multiple sclerosis. Journal of Rehabilitation Research and Development, 2002, 39, 187-99.	1.6	20
223	Interleukin 4 treatment of psoriasis: are pleiotropic cytokines suitable therapies for autoimmune diseases?. Trends in Pharmacological Sciences, 2003, 24, 613-616.	4.0	18
224	Early anisotropy changes in the corpus callosum of patients with optic neuritis. Neuroradiology, 2008, 50, 549-557.	1.1	18
225	Killer immunoglobulin-like receptor locus polymorphisms in multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 951-958.	1.4	18
226	T-Cell Specificity Influences Disease Heterogeneity in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	18
227	A functional basis for the association of HLA class II genes adn susceptibility to multiple sclerosis: cellular immune responses to myelin basic protein in a multiplex family. Journal of Neuroimmunology, 1993, 42, 199-207.	1.1	17
228	Longitudinal study of myelin basic protein-specific T-cell receptors during the course of multiple sclerosis. Journal of Neuroimmunology, 1997, 78, 162-171.	1.1	17
229	A Truncation Variant of the Cation Channel P2RX5 Is Upregulated during T Cell Activation. PLoS ONE, 2014, 9, e104692.	1.1	17
230	Up-regulation of inducible heat shock protein-70 expression in multiple sclerosis patients. Autoimmunity, 2014, 47, 127-133.	1.2	17
231	Mesenchymal Stromal/Stem Cells Do Not Ameliorate Experimental Autoimmune Encephalomyelitis and Are Not Detectable in the Central Nervous System of Transplanted Mice. Stem Cells and Development, 2016, 25, 1134-1148.	1.1	17
232	Identification of four novel T cell autoantigens and personal autoreactive profiles in multiple sclerosis. Science Advances, 2022, 8, eabn1823.	4.7	17
233	Diversity of T-cell receptor V _{alpha} , V _{beta} , and CDR3 expression by myelin basic protein-specific human T-cell clones. Neurology, 1995, 45, 1919-1922.	1.5	16
234	Human T lymphocytes specific for the immunodominant 83-99 epitope of myelin basic protein: Recognition of golli MBP HOG 7., 1996, 45, 820-828.		16

#	Article	IF	Citations
235	Whole Genome Sequencing Reveals a Chromosome 9p Deletion Causing DOCK8 Deficiency in an Adult Diagnosed with Hyper IgE Syndrome Who Developed Progressive Multifocal Leukoencephalopathy. Journal of Clinical Immunology, 2015, 35, 92-96.	2.0	16
236	An Altered Peptide Ligand Antagonizes Antigen-Specific T Cells of Patients with Human T Lymphotropic Virus Type I-Associated Neurological Disease. Journal of Immunology, 2000, 164, 5192-5198.	0.4	15
237	Deficient Fas expression by CD4+ CCR5+ T cells in multiple sclerosis. Journal of Neuroimmunology, 2006, 180, 147-158.	1.1	15
238	Nogo-Receptors NgR1 and NgR2 Do Not Mediate Regulation of CD4 T Helper Responses and CNS Repair in Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2011, 6, e26341.	1.1	15
239	Altered CSF Albumin Quotient Links Peripheral Inflammation and Brain Damage in MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	15
240	T-cell response to myelin basic protein and lipid-bound myelin basic protein in patients with multiple sclerosis and healthy donors. Journal of Neuroimmunology, 1998, 82, 96-100.	1.1	14
241	Differential effects of phosphodiesterase type 4-specific inhibition on human autoreactive myelin-specific T cell clones. Journal of Neuroimmunology, 1999, 98, 147-156.	1.1	14
242	Decrypting the spectrum of antigen-specific T-cell responses: the avidity repertoire of MBP-specific T-cells., 2000, 59, 86-93.		14
243	T-Cell Epitope Prediction with Combinatorial Peptide Libraries. Journal of Computational Biology, 2002, 9, 527-539.	0.8	14
244	The Orally Available, Synthetic Ether Lipid Edelfosine Inhibits T Cell Proliferation and Induces a Type I Interferon Response. PLoS ONE, 2014, 9, e91970.	1.1	14
245	A molecular view of multiple sclerosis and experimental autoimmune encephalitis: What can we learn from the epitope data?. Journal of Neuroimmunology, 2014, 267, 73-85.	1.1	14
246	Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis and their application for new therapeutic strategies., 1997, 49, 53-67.		14
247	Short-term MRI measurements as predictors of EDSS progression in relapsing-remitting multiple sclerosis: grey matter atrophy but not lesions are predictive in a real-life setting. PeerJ, 2016, 4, e2442.	0.9	14
248	Lack of over-expression of T cell receptor $\hat{V^2}$ 5.2 in myelin basic protein-specific T cell lines derived from HLA-DR2 positive multiple sclerosis patients and controls. Journal of Neuroimmunology, 1998, 84, 7-13.	1.1	13
249	Future Immunotherapies in Multiple Sclerosis. Seminars in Neurology, 2003, 23, 147-158.	0.5	13
250	A plea for "Omics―research in complex diseases such as multiple sclerosis—a change of mind is needed. Journal of the Neurological Sciences, 2004, 222, 3-5.	0.3	13
251	Peptidic complex mixtures as therapeutic agents in CNS autoimmunity. Molecular Immunology, 2004, 40, 1075-1087.	1.0	13
252	T2' imaging indicates decreased tissue metabolism in frontal white matter of MS patients. Multiple Sclerosis Journal, 2009, 15, 701-707.	1.4	13

#	Article	IF	CITATIONS
253	Effects of natalizumab therapy on intrathecal antiviral antibody responses in MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e621.	3.1	13
254	Contrast-enhanced MRI lesions during treatment with interferon \hat{l}^2 -1b predict increase in T1 black hole volume in patients with relapsing-remitting multiple sclerosis. Multiple Sclerosis Journal, 2005, 11, 146-148.	1.4	12
255	Intrathecal synthesis of virus-specific oligoclonal antibodies in patients with enterovirus infection of the central nervous system. Journal of Neurology, 1989, 236, 395-399.	1.8	11
256	Multiple sclerosis: Immunotherapy. Current Treatment Options in Neurology, 1999, 1, 201-219.	0.7	11
257	The effect of vesnarinone on TNF \hat{l} ± production in human peripheral blood mononuclear cells and microglia: a preclinical study for the treatment of multiple sclerosis. Journal of Neuroimmunology, 1999, 97, 134-145.	1.1	11
258	Neutralisation of IL12 p40 or IL23 p40 does not block inflammation in multiple sclerosis. Lancet Neurology, The, 2008, 7, 765-766.	4.9	11
259	No proinflammatory signature in CD34+ hematopoietic progenitor cells in multiple sclerosis patients. Multiple Sclerosis Journal, 2012, 18, 1188-1192.	1.4	11
260	Differential Expression of Serum Extracellular Vesicle miRNAs in Multiple Sclerosis: Disease-Stage Specificity and Relevance to Pathophysiology. International Journal of Molecular Sciences, 2022, 23, 1664.	1.8	11
261	Borrelia burgdorferi as a Trigger for Autoimmune T-Cell Reactions within the Central Nervous System. Annals of the New York Academy of Sciences, 1988, 539, 400-401.	1.8	10
262	Autoimmunity in Lyme Disease: Molecular Cloning of Antigens Recognized by Antibodies in the Cerebrospinal Fluid. Autoimmunity, 1989, 2, 323-330.	1.2	10
263	Immunological questions on hematopoietic stem cell transplantation for multiple sclerosis. Bone Marrow Transplantation, 2003, 32, S41-S44.	1.3	10
264	Stem cell transplantation in multiple sclerosis. Journal of Neurology, 2008, 255, 43-47.	1.8	10
265	Combining positional scanning peptide libraries, HLA-DR transfectants and bioinformatics to dissect the epitope spectrum of HLA class II cross-restricted CD4+ T cell clones. Journal of Immunological Methods, 2010, 353, 93-101.	0.6	10
266	Closing in on an oral treatment. Nature, 2010, 464, 360-361.	13.7	10
267	Prediction of combination therapies based on topological modeling of the immune signaling network in multiple sclerosis. Genome Medicine, 2021, 13, 117.	3.6	10
268	Chickenpox and multiple sclerosis: a case report Journal of Neurology, Neurosurgery and Psychiatry, 1995, 58, 637-638.	0.9	9
269	Dipeptidyl Peptidase IV in Inflammatory CNS Disease. , 2000, 477, 145-153.		9
270	Immunomodulatory effects of the ether phospholipid edelfosine in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 274, 111-124.	1.1	9

#	Article	IF	Citations
271	Antibody responses following induction of antigen-specific tolerance with antigen-coupled cells. Multiple Sclerosis Journal, 2015, 21, 651-655.	1.4	9
272	Lessons from studies of antigen-specific T cell responses in Multiple Sclerosis. , 2000, , 361-373.		9
273	Genetics of multiple sclerosis — how could disease-associated HLA-types contribute to pathogenesis?. , 1997, 49, 177-194.		8
274	Using stem cells in multiple sclerosis therapies. Cytotherapy, 2004, 6, 615-620.	0.3	8
275	Molecular mimicry and multiple sclerosis â€" a possible role for degenerate T cell recognition in the induction of autoimmune responses. , 1999, 55, 19-31.		7
276	Interleukin-2 and blood brain barrier in cats: pharmacokinetics and tolerance following intrathecal and intravenous administration. European Cytokine Network, 1992, 3, 399-406.	1.1	7
277	NK Cells and Innate-Like T Cells After Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 794077.	2.2	7
278	When T cells recognize a pattern, they might cause trouble. Current Opinion in Immunology, 2006, 18, 697-703.	2.4	6
279	Is haematopoietic stem cell transplantation a treatment option for severe MS or not?. Brain, 2007, 130, 1181-1182.	3.7	6
280	Characterization of Antigen-Induced CD4+ T-Cell Senescence in Multiple Sclerosis. Frontiers in Neurology, 2022, 13, 790884.	1.1	6
281	Different requirements of ICAM-1/LFA-1 adhesion in allorecognition and self-restricted antigen recognition by class II-specific T cell clones. European Journal of Immunology, 1994, 24, 947-951.	1.6	5
282	Multiple sclerosis: Are HLA class I molecules involved in disease pathogenesis?. Annals of Neurology, 1995, 38, 137-139.	2.8	5
283	In vitro modulation of human, autoreactive MBP-specific CD4+ T-cell clones by cyclosporin A. Journal of Neuroimmunology, 1997, 76, 91-99.	1.1	5
284	HLA class I: friend and foe of multiple sclerosis. Nature Medicine, 2008, 14, 1150-1151.	15.2	5
285	Specific aspects of immunotherapy for multiple sclerosis in Switzerland: A structured commentary. Clinical and Translational Neuroscience, 2019, 3, 2514183X1882207.	0.4	5
286	Is multiple sclerosis progression associated with the HLA-DR15 haplotype?. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731989461.	0.5	5
287	Mechanistic and Biomarker Studies to Demonstrate Immune Tolerance in Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 787498.	2.2	5
288	Antibody Titer Determinations against Borrelia burgdorferi in Blood Donors and in Two Different Groups of Patients. Annals of the New York Academy of Sciences, 1988, 539, 497-499.	1.8	4

#	Article	IF	Citations
289	Reply. Annals of Neurology, 1998, 44, 426-426.	2.8	4
290	Peptide Binding Motifs for MHC Class I and II Molecules. Current Protocols in Immunology, 2000, 36, Appendix 1I.	3.6	4
291	New drugs may improve, complicate treatment for multiple sclerosis. Nature Medicine, 2010, 16, 272-272.	15.2	4
292	Understanding risk of PML through multiple sclerosis. Lancet Neurology, The, 2018, 17, 391-392.	4.9	4
293	Targeting fibrin in neurodegeneration. Nature Immunology, 2018, 19, 1149-1150.	7.0	4
294	In search of cerebrospinal fluid biomarkers of fatigue in multiple sclerosis: A proteomics study. Journal of Sleep Research, 2019, 28, e12721.	1.7	4
295	T-cell Receptor Use in Multiple Sclerosis. Annals of the New York Academy of Sciences, 1995, 756, 259-264.	1.8	3
296	Limited repertoire of HLA-DRB1*0401-restricted MBP111–129-specific T cells in HLA-DRB1*0401 Tg mice and their pathogenic potential. Journal of Neuroimmunology, 2004, 151, 94-102.	1.1	3
297	Different Development of Myelin Basic Protein Agonist- and Antagonist-Specific Human TCR Transgenic T Cells in the Thymus and Periphery. Journal of Immunology, 2008, 181, 5462-5472.	0.4	3
298	Haematopoietic stem cell transplantation for severe autoimmune diseases in children: A review of current literature, registry activity and future directions on behalf of the autoimmune diseases and paediatric diseases working parties of the European Society for Blood and Marrow Transplantation. British Journal of Haematology, 2022, 198, 24-45.	1.2	3
299	Immunization with a cannabinoid receptor type 1 peptide results in experimental allergic meningocerebellitis in the Lewis rat: A model for cell-mediated autoimmune neuropathology. Journal of Neuroscience Research, 2002, 70, 150-160.	1.3	2
300	Community Corner. Nature Medicine, 2008, 14, 491-491.	15.2	2
301	Quantitative T2′ imaging in patients with clinically isolated syndrome. Acta Neurologica Scandinavica, 2012, 126, 357-363.	1.0	2
302	Autologous hematopoietic stem cell transplantation in multiple sclerosis: a global approval and availability review. Bone Marrow Transplantation, 2021, 56, 1754-1756.	1.3	2
303	T Cell Receptor Gene Rearrangements in the Human Response to Myelin Basic Protein. Annals of the New York Academy of Sciences, 1991, 636, 396-399.	1.8	1
304	Peripheral blood cell bulk cultures are not suitable for the analysis of the genetic control of T-cell cytokine function. Immunology Letters, 2001, 78, 21-27.	1.1	1
305	Peptides as Targets of T Cell-Mediated Immune Responses. , 2006, , 585-594.		1
306	Prevention and therapy of JC polyomavirus-mediated progressive multifocal leukoencephalopathy – a realistic possibility?. Swiss Medical Weekly, 2017, 147, w14520.	0.8	1

#	Article	IF	Citations
307	When a T cell engages a B cell: novel insights in multiple sclerosis. Swiss Medical Weekly, 2020, 150, w20330.	0.8	1
308	T cell receptor usage in neurological disease: the case in multiple sclerosis. Seminars in Neuroscience, 1992, 4, 243-248.	2.3	0
309	Chapter 4 Immunology of Multiple Sclerosis. Blue Books of Practical Neurology, 2003, , 33-58.	0.1	0
310	The initiation of the autoimmune response in multiple sclerosis. Clinical Neurology and Neurosurgery, 2004, 106, 218-218.	0.6	0
311	Use of pharmacogenomics in clinical trials for multiple sclerosis. Journal of Neurochemistry, 2008, 81, 81-81.	2.1	0
312	Biomarkers in Multiple Sclerosis. Blue Books of Neurology, 2010, , 120-146.	0.1	0
313	Peptide Recognition by T Cells. , 2013, , 697-704.		0
314	Pathophysiologisch ansetzende Therapie., 2015,, 267-359.		0
315	The 3A6â€TCR/superagonist/HLAâ€DR2a complex shows similar interface and reduced flexibility compared to the complex with selfâ€peptide. Proteins: Structure, Function and Bioinformatics, 2020, 88, 31-46.	1.5	0
316	The Integration of Positional Scanning Libraries with Bioinformatics and Proteomics., 2001,, 194-195.		0
317	Specific Immunotherapy of Multiple Sclerosis by Altered Peptide Ligands — Risk or Benefit?. , 2001, , 69-87.		0
318	Characterization of Highly Stimulatory T Cell Ligands Identified Using Positional Scanning Libraries. , 2001, , 1051-1052.		0
319	New ligands for MHC molecules based on activity patterns of peptide libraries. , 2002, , 766-768.		0
320	Experimental immunotherapies for multiple sclerosis., 1996,, 119-142.		0
321	The affinity spectrum of myelin basic protein-reactive T cells. , 1999, , 3-9.		0
322	From specificity to degeneracy to molecular mimicry: antigen recognition of human autoreactive and pathogen-specific CD4+ T cells., 1999,, 21-28.		0
323	Combinatorial peptide libraries and molecular recognition in T-cell mediated immune response. , 1999, , 788-791.		0