Paul M Sondel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2865217/publications.pdf

Version: 2024-02-01

88 papers

5,437 citations

33 h-index 70 g-index

90 all docs 90 docs citations

90 times ranked 5781 citing authors

#	Article	IF	CITATIONS
1	Mac Cheever (1944–2021): a tribute to a life of achievement and service. , 2022, 10, e004433.		O
2	Short-course neoadjuvant in situ vaccination for murine melanoma., 2022, 10, e003586.		7
3	Interleukin-12 as an in situ cancer vaccine component: a review. Cancer Immunology, Immunotherapy, 2022, 71, 2057-2065.	4.2	22
4	Improved Outcome in Children With Newly Diagnosed High-Risk Neuroblastoma Treated With Chemoimmunotherapy: Updated Results of a Phase II Study Using hu14.18K322A. Journal of Clinical Oncology, 2022, 40, 335-344.	1.6	46
5	Immunotherapy of Neuroblastoma: Facts and Hopes. Clinical Cancer Research, 2022, 28, 3196-3206.	7.0	29
6	Expression of neuroblastomaâ€related genes in bone marrow at end of highâ€risk neuroblastoma therapy. Pediatric Blood and Cancer, 2022, , e29719.	1.5	0
7	Mechanism of effective combination radio-immunotherapy against 9464D-GD2, an immunologically cold murine neuroblastoma., 2022, 10, e004834.		4
8	Stress Keratin 17 Expression in Head and Neck Cancer Contributes to Immune Evasion and Resistance to Immune-Checkpoint Blockade. Clinical Cancer Research, 2022, 28, 2953-2968.	7.0	12
9	Outcomes Following GD2-Directed Postconsolidation Therapy for Neuroblastoma After Cessation of Random Assignment on ANBL0032: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2022, 40, 4107-4118.	1.6	11
10	Long-Term Follow-up of a Phase III Study of $ch14.18$ (Dinutuximab) + Cytokine Immunotherapy in Children with High-Risk Neuroblastoma: COG Study ANBL0032. Clinical Cancer Research, 2021, 27, 2179-2189.	7.0	95
11	Intravital Metabolic Autofluorescence Imaging Captures Macrophage Heterogeneity Across Normal and Cancerous Tissue. Frontiers in Bioengineering and Biotechnology, 2021, 9, 644648.	4.1	16
12	Depth of tumor implantation affects response to in situ vaccination in a syngeneic murine melanoma model., 2021, 9, e002107.		8
13	Combination of radiation therapy, bempegaldesleukin, and checkpoint blockade eradicates advanced solid tumors and metastases in mice., 2021, 9, e002715.		26
14	Optimizing Flow Cytometric Analysis of Immune Cells in Samples Requiring Cryopreservation from Tumor-Bearing Mice. Journal of Immunology, 2021, 207, ji2000656.	0.8	3
15	Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade. Science Translational Medicine, 2021, 13, .	12.4	92
16	Safety and feasibility of an in situ vaccination and immunomodulatory targeted radionuclide combination immuno-radiotherapy approach in a comparative (companion dog) setting. PLoS ONE, 2021, 16, e0255798.	2.5	12
17	Combining Immunocytokine and Ex Vivo Activated NK Cells as a Platform for Enhancing Graft-Versus-Tumor Effects Against GD2+ Murine Neuroblastoma. Frontiers in Immunology, 2021, 12, 668307.	4.8	4
18	Radiation Augments the Local Anti-Tumor Effect of In Situ Vaccine With CpG-Oligodeoxynucleotides and Anti-OX40 in Immunologically Cold Tumor Models. Frontiers in Immunology, 2021, 12, 763888.	4.8	9

#	Article	IF	Citations
19	A Phase 1 and pharmacokinetic study evaluating daily or weekly schedules of the humanized anti-GD2 antibody hu14.18K322A in recurrent/refractory solid tumors. MAbs, 2020, 12, 1773751.	5.2	4
20	In situ Vaccine Plus Checkpoint Blockade Induces Memory Humoral Response. Frontiers in Immunology, 2020, 11, 1610.	4.8	12
21	Intratumoral injection reduces toxicity and antibody-mediated neutralization of immunocytokine in a mouse melanoma model., 2020, 8, e001262.		14
22	Pre-existing antitherapeutic antibodies against the Fc region of the hu14.18K322A mAb are associated with outcome in patients with relapsed neuroblastoma. , 2020, 8, e000590.		1
23	Analysis of ex vivo expanded and activated clinical-grade human NK cells after cryopreservation. Cytotherapy, 2020, 22, 450-457.	0.7	14
24	Outcome-Related Signatures Identified by Whole Transcriptome Sequencing of Resectable Stage III/IV Melanoma Evaluated after Starting Hu14.18-IL2. Clinical Cancer Research, 2020, 26, 3296-3306.	7.0	12
25	Irinotecan, Temozolomide, and Dinutuximab With GM-CSF in Children With Refractory or Relapsed Neuroblastoma: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2020, 38, 2160-2169.	1.6	98
26	Insights from immuno-oncology: the Society for Immunotherapy of Cancer Statement on access to IL-6-targeting therapies for COVID-19., 2020, 8, e000878.		63
27	A Phase II Trial of Hu14.18K322A in Combination with Induction Chemotherapy in Children with Newly Diagnosed High-Risk Neuroblastoma. Clinical Cancer Research, 2019, 25, 6320-6328.	7.0	61
28	90Y-NM600 targeted radionuclide therapy induces immunologic memory in syngeneic models of T-cell Non-Hodgkin's Lymphoma. Communications Biology, 2019, 2, 79.	4.4	39
29	Follicular lymphoma patients with KIR2DL2 and KIR3DL1 and their ligands (HLA-C1 and HLA-Bw4) show improved outcome when receiving rituximab. , 2019, 7, 70.		19
30	Combined innate and adaptive immunotherapy overcomes resistance of immunologically cold syngeneic murine neuroblastoma to checkpoint inhibition., 2019, 7, 344.		45
31	Evaluating natural killer cell cytotoxicity against solid tumors using a microfluidic model. Oncolmmunology, 2019, 8, 1553477.	4.6	103
32	MUC16 suppresses human and murine innate immune responses. Gynecologic Oncology, 2019, 152, 618-628.	1.4	24
33	Human and murine IL2 receptors differentially respond to the human-IL2 component of immunocytokines. Oncolmmunology, 2019, 8, e1238538.	4.6	8
34	Combining precision radiotherapy with molecular targeting and immunomodulatory agents: a guideline by the American Society for Radiation Oncology. Lancet Oncology, The, 2018, 19, e240-e251.	10.7	108
35	Neuroblastoma Patients' KIR and KIR-Ligand Genotypes Influence Clinical Outcome for Dinutuximab-based Immunotherapy: A Report from the Children's Oncology Group. Clinical Cancer Research, 2018, 24, 189-196.	7.0	45
36	Pilot trial of the hu14.18-IL2 immunocytokine in patients with completely resectable recurrent stage III or stage IV melanoma. Cancer Immunology, Immunotherapy, 2018, 67, 1647-1658.	4.2	25

#	Article	IF	CITATIONS
37	A Comprehensive Safety Trial of Chimeric Antibody 14.18 With GM-CSF, IL-2, and Isotretinoin in High-Risk Neuroblastoma Patients Following Myeloablative Therapy: Children's Oncology Group Study ANBL0931. Frontiers in Immunology, 2018, 9, 1355.	4.8	66
38	Tumor-Specific Inhibition of <i>In Situ</i> Vaccination by Distant Untreated Tumor Sites. Cancer Immunology Research, 2018, 6, 825-834.	3.4	61
39	Reduction in oral mucositis severity using a topical vasoconstrictor: A case report of three bone marrow transplant patients. Integrative Cancer Science and Therapeutics, 2018, 5, .	0.1	1
40	Effective Combination of Innate and Adaptive Immunotherapeutic Approaches in a Mouse Melanoma Model. Journal of Immunology, 2017, 198, 1575-1584.	0.8	15
41	Donor selection for <i>ex vivo</i> expanded natural killer cells as adoptive cancer immunotherapy. Future Oncology, 2017, 13, 1043-1047.	2.4	12
42	Irinotecan–temozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): an open-label, randomised, phase 2 trial. Lancet Oncology, The, 2017, 18, 946-957.	10.7	205
43	A Pilot Trial of Humanized Anti-GD2 Monoclonal Antibody (hu14.18K322A) with Chemotherapy and Natural Killer Cells in Children with Recurrent/Refractory Neuroblastoma. Clinical Cancer Research, 2017, 23, 6441-6449.	7.0	116
44	FCGR Polymorphisms Influence Response to IL2 in Metastatic Renal Cell Carcinoma. Clinical Cancer Research, 2017, 23, 2159-2168.	7.0	12
45	HLA-Bw4-I-80 Isoform Differentially Influences Clinical Outcome As Compared to HLA-Bw4-T-80 and HLA-A-Bw4 Isoforms in Rituximab or Dinutuximab-Based Cancer Immunotherapy. Frontiers in Immunology, 2017, 8, 675.	4.8	18
46	The need for a network to establish and validate predictive biomarkers in cancer immunotherapy. Journal of Translational Medicine, 2017, 15, 223.	4.4	25
47	Immunocytokines for cancer treatment: past, present and future. Current Opinion in Immunology, 2016, 40, 96-102.	5.5	101
48	<i>In Situ</i> Tumor Vaccination by Combining Local Radiation and Tumor-Specific Antibody or Immunocytokine Treatments. Cancer Research, 2016, 76, 3929-3941.	0.9	120
49	Killer immunoglobulin-like receptor (KIR) and KIR–ligand genotype do not correlate with clinical outcome of renal cell carcinoma patients receiving high-dose IL2. Cancer Immunology, Immunotherapy, 2016, 65, 1523-1532.	4.2	5
50	Anti-GD2 mAbs and next-generation mAb-based agents for cancer therapy. Immunotherapy, 2016, 8, 1097-1117.	2.0	58
51	Human NK cells maintain licensing status and are subject to killer immunoglobulin-like receptor (KIR) and KIR-ligand inhibition following ex vivo expansion. Cancer Immunology, Immunotherapy, 2016, 65, 1047-1059.	4.2	20
52	Genotyping Single Nucleotide Polymorphisms and Copy Number Variability of the FCGRs Expressed on NK Cells. Methods in Molecular Biology, 2016, 1441, 43-56.	0.9	8
53	NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Frontiers in Immunology, 2015, 6, 368.	4.8	411
54	Tumoricidal Effects of Macrophage-Activating Immunotherapy in a Murine Model of Relapsed/Refractory Multiple Myeloma. Cancer Immunology Research, 2015, 3, 881-890.	3.4	24

#	Article	IF	CITATIONS
55	Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages. Molecular Immunology, 2015, 66, 208-215.	2.2	15
56	A feasibility and phase II study of the hu14.18-IL2 immunocytokine in combination with GM-CSF and isotretinoin in patients with recurrent or refractory neuroblastoma: A Children's Oncology Group study Journal of Clinical Oncology, 2015, 33, 10017-10017.	1.6	7
57	Phase I Trial of a Novel Anti-GD2 Monoclonal Antibody, Hu14.18K322A, Designed to Decrease Toxicity in Children With Refractory or Recurrent Neuroblastoma. Journal of Clinical Oncology, 2014, 32, 1445-1452.	1.6	134
58	Intratumoral treatment of smaller mouse neuroblastoma tumors with a recombinant protein consisting of IL-2 linked to the Hu14.18 antibody increases intratumoral CD8+ T and NK cells and improves survival. Cancer Immunology, Immunotherapy, 2013, 62, 1303-1313.	4.2	44
59	Intratumoral hu14.18–IL-2 (IC) Induces Local and Systemic Antitumor Effects That Involve Both Activated T and NK Cells As Well As Enhanced IC Retention. Journal of Immunology, 2012, 189, 2656-2664.	0.8	64
60	Current and Potential Uses of Immunocytokines as Cancer Immunotherapy. Antibodies, 2012, 1, 149-171.	2.5	36
61	Anti-GD2 Antibody with GM-CSF, Interleukin-2, and Isotretinoin for Neuroblastoma. New England Journal of Medicine, 2010, 363, 1324-1334.	27.0	1,460
62	Anti-GD2 strategy in the treatment of neuroblastoma. Drugs of the Future, 2010, 35, 665.	0.1	57
63	Immunogenicity of the Hu14.18-IL2 Immunocytokine Molecule in Adults With Melanoma and Children With Neuroblastoma. Clinical Cancer Research, 2009, 15, 5923-5930.	7.0	41
64	Intratumoral immunocytokine treatment results in enhanced antitumor effects. Cancer Immunology, Immunotherapy, 2008, 57, 1891-1902.	4.2	47
65	A Phase I Clinical Trial of the hu14.18-IL2 (EMD 273063) as a Treatment for Children with Refractory or Recurrent Neuroblastoma and Melanoma: a Study of the Children's Oncology Group. Clinical Cancer Research, 2006, 12, 1750-1759.	7.0	176
66	Enhanced Activity of Hu14.18-IL2 Immunocytokine against Murine NXS2 Neuroblastoma when Combined with Interleukin 2 Therapy. Clinical Cancer Research, 2004, 10, 4839-4847.	7.0	91
67	Phase I Clinical Trial of the Immunocytokine EMD 273063 in Melanoma Patients. Journal of Clinical Oncology, 2004, 22, 4463-4473.	1.6	141
68	Determination of Peak Serum Levels and Immune Response to the Humanized Anti-Ganglioside Antibody-Interleukin-2 Immunocytokine., 2003, 85, 123-132.		12
69	Pleasant memories: remembering immune protection while forgetting about graft-versus-host disease. Journal of Clinical Investigation, 2003, 112, 25-27.	8.2	17
70	Preclinical and clinical development of immunocytokines. Current Opinion in Investigational Drugs, 2003, 4, 696-700.	2.3	14
71	Central venous device-related infection and thrombosis in patients treated with moderate dose continuous-infusion interleukin-2. Cancer, 2001, 91, 806-814.	4.1	36
72	A Phase Ib/II trial of granulocyte-macrophage?colony stimulating factor and interleukin-2 for renal cell carcinoma patients with pulmonary metastases. Cancer, 2000, 88, 1892-1901.	4.1	25

#	Article	IF	Citations
73	Interleukin-12 gene therapy of a weakly immunogenic mouse mammary carcinoma results in reduction of spontaneous lung metastases via a T-cell-independent mechanism. Cancer Gene Therapy, 2000, 7, 826-838.	4.6	67
74	Pharmacokinetics and stability of the ${\rm ch}14.18$ -interleukin-2 fusion protein in mice. Cancer Immunology, Immunotherapy, 1999, 48, 219-229.	4.2	43
75	A Phase I/IB trial of murine monoclonal anti-GD2 antibody 14.G2a plus interleukin-2 in children with refractory neuroblastoma. Cancer, 1997, 80, 317-333.	4.1	159
76	Systemic Interleukin-2 Modulates the Anti-Idiotypic Response to Chimeric Anti-GD2 Antibody in Patients with Melanoma. Journal of Immunotherapy, 1996, 19, 278-295.	2.4	26
77	Biologic and immunologic approaches to comprehensive therapy for pediatric malignant conditions. Laboratory–clinical interaction. Cancer, 1993, 71, 3429-3434.	4.1	3
78	A multigene family on human chromosome 12 encodes natural killer-cell lectins. Immunogenetics, 1993, 37, 455-60.	2.4	118
79	Strategies for improving antitumor activity utilizing IL-2: Preclinical models and analysis of antitumor activity of lymphocytes from patients receiving IL-2. Biotherapy (Dordrecht, Netherlands), 1992, 4, 189-198.	0.7	4
80	In Vivo Effects of Multiple Cycles of Recombinant Interleukin-2 (IL2) on Peripheral Granulocyte-macrophage Hematopoietic Progenitors Circulating in the Blood of Cancer Patients. Tumori, 1991, 77, 420-422.	1.1	6
81	BLT-esterase activity followingin vitro andin vivo activation of human lymphocytes with interleukin-2. Biotherapy (Dordrecht, Netherlands), 1991, 3, 253-260.	0.7	0
82	Analysis of T cell receptor \hat{l}^2 and \hat{l}^3 genes from peripheral blood, regional lymph node and tumor-infiltrating lymphocyte clones from melanoma patients. Cancer Immunology, Immunotherapy, 1991, 32, 325-330.	4.2	20
83	Prolonged Interleukin-2 (IL-2) Treatment Can Augment Immune Activation Without Enhancing Antitumor Activity in Renal Cell Carcinom. Cancer Investigation, 1991, 9, 35-48.	1.3	15
84	Effects of interleukin-2 (IL-2) on human plasma lipid, lipoprotein, and C-reactive protein. Biotherapy (Dordrecht, Netherlands), 1990, 2, 193-198.	0.7	11
85	Lymphokines and cytokines as cancer treatment.Immunotherapy realized. Cancer, 1990, 65, 800-814.	4.1	93
86	the influence of autologous lymphokine-activated killer cell infusions on the toxicity and antitumor effect of repetitive cycles of interleukin-2. Cancer, 1990, 66, 2457-2464.	4.1	31
87	Potentiation of differential hyperthermic sensitivity of AKR leukemia and normal bone marrow cells by lidocaine or thiopental. Cancer, 1984, 54, 2831-2835.	4.1	19
88	Genetic Control of Mixed Leukocyte Culture Reactivity. Immunological Reviews, 1972, 12, 30-56.	6.0	19