
Mohammed H Al-Saleh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2864661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon, 2009, 47, 1738-1746.	10.3	1,274
2	A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon, 2009, 47, 2-22.	10.3	978
3	EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study. Carbon, 2013, 60, 146-156.	10.3	767
4	Review of the mechanical properties of carbon nanofiber/polymer composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 2126-2142.	7.6	383
5	Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation. Journal of Materials Chemistry, 2011, 21, 829-836.	6.7	241
6	Copper nanowire/polystyrene nanocomposites: Lower percolation threshold and higher EMI shielding. Composites Part A: Applied Science and Manufacturing, 2011, 42, 92-97.	7.6	208
7	An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends. Composites Part A: Applied Science and Manufacturing, 2008, 39, 284-293.	7.6	157
8	X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. Journal Physics D: Applied Physics, 2013, 46, 035304.	2.8	145
9	Electromagnetic Interference (EMI) Shielding Effectiveness of PP/PS Polymer Blends Containing High Structure Carbon Black. Macromolecular Materials and Engineering, 2008, 293, 621-630.	3.6	142
10	Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synthetic Metals, 2015, 205, 78-84.	3.9	142
11	Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synthetic Metals, 2015, 209, 41-46.	3.9	99
12	Electrical, EMI shielding and tensile properties of PP/PE blends filled with GNP:CNT hybrid nanofiller. Synthetic Metals, 2016, 217, 322-330.	3.9	80
13	Thermal performance and fire resistance of nanoclay modified cementitious materials. Construction and Building Materials, 2018, 159, 213-219.	7.2	72
14	Processing-microstructure-property relationship in conductive polymer nanocomposites. Polymer, 2010, 51, 2740-2747.	3.8	71
15	Electrical and electromagnetic interference shielding characteristics of GNP/UHMWPE composites. Journal Physics D: Applied Physics, 2016, 49, 195302.	2.8	71
16	Impedance characteristics and conductivity of CNT/ABS nanocomposites. Journal Physics D: Applied Physics, 2013, 46, 385305.	2.8	67
17	Electrically conductive carbon nanotube/polypropylene nanocomposite with improved mechanical properties. Materials and Design, 2015, 85, 76-81.	7.0	66
18	Nanostructured carbon black filled polypropylene/polystyrene blends containing styrene–butadiene–styrene copolymer: Influence of morphology on electrical resistivity. European Polymer Journal, 2008, 44, 1931-1939.	5.4	63

#	Article	IF	CITATIONS
19	Effect of using carbon nanotube modified epoxy on bond–slip behavior between concrete and FRP sheets. Construction and Building Materials, 2016, 105, 511-518.	7.2	62
20	CNT/ABS nanocomposites by solution processing: Proper dispersion and selective localization for low percolation threshold. Composites Part A: Applied Science and Manufacturing, 2013, 46, 53-59.	7.6	52
21	Microstructure, electrical, and electromagnetic interference shielding properties of carbon nanotube/acrylonitrile–butadiene–styrene nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1356-1362.	2.1	51
22	Effect of carbon nanotubes on strengthening of RC beams retrofitted with carbon fiber/epoxy composites. Materials and Design, 2016, 89, 225-234.	7.0	50
23	Clay/carbon nanotube hybrid mixture to reduce the electrical percolation threshold of polymer nanocomposites. Composites Science and Technology, 2017, 149, 34-40.	7.8	50
24	Carbon nanofiber/polyethylene nanocomposite: Processing behavior, microstructure and electrical properties. Materials & Design, 2013, 52, 128-133.	5.1	48
25	Hybrids of conductive polymer nanocomposites. Materials & Design, 2013, 52, 1071-1076.	5.1	47
26	Carbon nanotube-filled polypropylene/polyethylene blends: compatibilization and electrical properties. Polymer Bulletin, 2016, 73, 975-987.	3.3	39
27	Electrical and dielectric behaviors of dry-mixed CNT/UHMWPE nanocomposites. High Performance Polymers, 2014, 26, 205-211.	1.8	38
28	Experimental and theoretical analysis of the mechanical and thermal properties of carbon nanotube/acrylonitrile–styrene–butadiene nanocomposites. Polymer, 2016, 89, 12-17.	3.8	34
29	A viscoelastic-based model for TFC membranes flux reduction during compaction. Desalination, 2014, 344, 362-370.	8.2	33
30	Graphene Nanoplatelet–Polystyrene Nanocomposite: Dielectric and Charge Storage Behaviors. Journal of Electronic Materials, 2016, 45, 3532-3539.	2.2	33
31	Electrically conductive carbon nanofiber/polyethylene composite: effect of melt mixing conditions. Polymers for Advanced Technologies, 2011, 22, 246-253.	3.2	32
32	Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns. Composite Structures, 2015, 134, 523-532.	5.8	32
33	Electrical double percolation and carbon nanotubes distribution in solution processed immiscible polymer blend. Synthetic Metals, 2013, 175, 75-80.	3.9	30
34	Flexural strength recovery of heat-damaged RC beams using carbon nanotubes modified CFRP. Construction and Building Materials, 2017, 145, 474-482.	7.2	24
35	Effect of dc-bias on the dielectric behavior of CNT/ABS nanocomposites. Physica B: Condensed Matter, 2013, 418, 41-46.	2.7	23
36	The effect of active layer non-uniformity on the flux and compaction of TFC membranes. Desalination, 2013, 328, 17-23.	8.2	21

#	Article	IF	CITATIONS
37	Carbon-based polymer nanocomposites as dielectric energy storage materials. Nanotechnology, 2019, 30, 062001.	2.6	21
38	Mechanical properties of carbon blackâ€filled polypropylene/polystyrene blends containing styreneâ€butadieneâ€styrene copolymer. Polymer Engineering and Science, 2009, 49, 693-702.	3.1	18
39	Morphological, electrical and electromagnetic interference shielding characterization of vapor grown carbon nanofiber/polystyrene nanocomposites. Polymer International, 2013, 62, 601-607.	3.1	18
40	Influence of Nanoclay on the Properties and Morphology of Cement Mortar. KSCE Journal of Civil Engineering, 2018, 22, 4056-4063.	1.9	17
41	Repair of heat-damaged RC columns using carbon nanotubes modified CFRP. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	15
42	Utilizing Vacuum Bagging Process to Prepare Carbon Fiber/CNT-Modified-epoxy Composites with Improved Mechanical Properties. Polymer-Plastics Technology and Engineering, 2018, 57, 175-184.	1.9	14
43	Effect of processing conditions on the dispersion, electrical, and mechanical properties of carbon nanotube/polypropylene nanocomposites. Journal of Reinforced Plastics and Composites, 2015, 34, 742-749.	3.1	11
44	Electrical Impedance Spectroscopic Study of CNT/Ethylene-alt-CO/Propylene-alt-CO Polyketones Nanocomposite. Journal of Macromolecular Science - Physics, 2014, 53, 878-892.	1.0	9
45	Effect of Clay Addition on the Properties of Carbon Nanotubes-Filled Immiscible Polyethylene/Polypropylene Blends. Journal of Macromolecular Science - Physics, 2015, 54, 1259-1266.	1.0	9
46	Effect of Nanoclay on the Expansive Potential of Cement Mortar due to Alkali-Silica Reaction. ACI Materials Journal, 2015, 112, .	0.2	9
47	Synergistic effect of CNT/CB hybrid mixture on the electrical properties of conductive composites. Materials Research Express, 2019, 6, 065011.	1.6	8
48	Influence of polymer structure on the electrical resistivity of nanocomposite materials. Synthetic Metals, 2020, 265, 116409.	3.9	7
49	Measuring surface energy of carbon nanotubes using modified washburn method. Materials Research Express, 2019, 6, 115088.	1.6	6
50	Effect of elevated temperatures on mechanical performance of cement mortar with nanoclay. MATEC Web of Conferences, 2017, 120, 02005.	0.2	5
51	Fabrication and dielectric characterization of barium hexaferrite/UHMWPE composite for energy storage applications. Physica B: Condensed Matter, 2017, 523, 45-51.	2.7	5
52	Effect of viscosity reducing agent on the properties of CNT/epoxy nanocomposites. Journal of Polymer Engineering, 2016, 36, 407-412.	1.4	4
53	Influence of graphene nanoplatelets geometrical characteristics on the properties of polylactic acid composites. Diamond and Related Materials, 2022, 126, 109092.	3.9	4
54	Influence of Carbon Nanotubes Purity on the Properties of Carbon Nanotubes/Low-Density Polyethylene Composites. Journal of Macromolecular Science - Physics, 0, , 1-11.	1.0	1

#	Article	IF	CITATIONS
55	Effect of Polyethylene Structure on the Properties of Carbon Nanotube/Polyethylene Composites. Journal of Macromolecular Science - Physics, 0, , 1-11.	1.0	0