T-L Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2864608/publications.pdf

Version: 2024-02-01

298 papers 10,016 citations

50 h-index 84 g-index

300 all docs 300 docs citations

300 times ranked

3672 citing authors

#	Article	IF	CITATIONS
1	Proton Temperature Anisotropies in the Venus Plasma Environment During Solar Minimum and Maximum. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	6
2	A Case Study of the Induced Magnetosphere Boundary at the Martian Subsolar Region. Astrophysical Journal, 2022, 927, 171.	1.6	3
3	Oxygen Ion Escape at Venus Associated With Threeâ€Dimensional Kelvinâ€Helmholtz Instability. Geophysical Research Letters, 2022, 49, .	1.5	7
4	Magnetic Fluctuations Associated With Small-Scale Magnetic Holes in the Martian Magnetosheath. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	5
5	Statistical study of lightning-generated whistler-mode waves observed by Venus Express. Icarus, 2022, 380, 114993.	1.1	2
6	Evidence of Alfvén Waves Generated by Mode Coupling in the Magnetotail Lobe. Geophysical Research Letters, 2022, 49, .	1.5	6
7	Deployable boom for Mars Orbiter Magnetometer onboard "Tianwen-1― , 2022, 52, 1.		0
8	Electronâ€Scale Current Sheet as the Boundary of a Linear Magnetic Hole in the Terrestrial Current Sheet Observed by the Magnetospheric Multiscale Mission. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	5
9	Heavy Ion Escape From Martian Wake Enhanced by Magnetic Reconnection. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	4
10	Deployable boom for Mars Orbiter Magnetometer onboard Tianwen-1., 2022, 52, 7.		0
10	Deployable boom for Mars Orbiter Magnetometer onboard Tianwen-1., 2022, 52, 7. Scientific objectives and payloads of Tianwen-1, China's first Mars exploration mission. Advances in Space Research, 2021, 67, 812-823.	1.2	0 131
	Scientific objectives and payloads of Tianwen-1, China's first Mars exploration mission. Advances in	0.9	
11	Scientific objectives and payloads of Tianwen-1, China's first Mars exploration mission. Advances in Space Research, 2021, 67, 812-823. The spectral scalings of magnetic fluctuations upstream and downstream of the Venusian bow shock.		131
11 12	Scientific objectives and payloads of Tianwen-1, China's first Mars exploration mission. Advances in Space Research, 2021, 67, 812-823. The spectral scalings of magnetic fluctuations upstream and downstream of the Venusian bow shock. Earth, Planets and Space, 2021, 73, . Speciesâ€dependent Response of the Martian Ionosphere to the 2018 Global Dust Event. Journal of	0.9	131 5
11 12 13	Scientific objectives and payloads of Tianwen-1, China's first Mars exploration mission. Advances in Space Research, 2021, 67, 812-823. The spectral scalings of magnetic fluctuations upstream and downstream of the Venusian bow shock. Earth, Planets and Space, 2021, 73, . Speciesâ€dependent Response of the Martian Ionosphere to the 2018 Global Dust Event. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006679. First Observations of an Ion Vortex in a Magnetic Hole in the Solar Wind by MMS. Astronomical	0.9	131 5 14
11 12 13	Scientific objectives and payloads of Tianwen-1, China's first Mars exploration mission. Advances in Space Research, 2021, 67, 812-823. The spectral scalings of magnetic fluctuations upstream and downstream of the Venusian bow shock. Earth, Planets and Space, 2021, 73, . Speciesâ€dependent Response of the Martian Ionosphere to the 2018 Global Dust Event. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006679. First Observations of an Ion Vortex in a Magnetic Hole in the Solar Wind by MMS. Astronomical Journal, 2021, 161, 110. Statistical Characteristics of Fieldâ€Aligned Currents in the Plasma Sheet Boundary Layer. Journal of	0.9 1.5 1.9	131 5 14 14
11 12 13 14	Scientific objectives and payloads of Tianwen-1, Chinaâ∈™s first Mars exploration mission. Advances in Space Research, 2021, 67, 812-823. The spectral scalings of magnetic fluctuations upstream and downstream of the Venusian bow shock. Earth, Planets and Space, 2021, 73, . Speciesâ€dependent Response of the Martian Ionosphere to the 2018 Global Dust Event. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006679. First Observations of an Ion Vortex in a Magnetic Hole in the Solar Wind by MMS. Astronomical Journal, 2021, 161, 110. Statistical Characteristics of Fieldâ€Aligned Currents in the Plasma Sheet Boundary Layer. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028319. Fieldâ€Aligned Currents Originating From the Chaotic Motion of Electrons in the Tilted Current Sheet:	0.9 1.5 1.9	131 5 14 14 6

#	Article	IF	Citations
19	Reflection of low-frequency fast magnetosonic waves at the local two-ion cutoff frequency: observation in the plasmasphere. Annales Geophysicae, 2021, 39, 613-625.	0.6	1
20	Trapping and Amplification of Unguided Mode EMIC Waves in the Radiation Belt. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029322.	0.8	1
21	Statistical Properties of Small-scale Linear Magnetic Holes in the Martian Magnetosheath. Astrophysical Journal, 2021, 916, 104.	1.6	14
22	The Venus Express observation of Venus' induced magnetosphere boundary at solar maximum. Astronomy and Astrophysics, 2021, 652, A113.	2.1	6
23	Statistical Properties of Electron-scale Magnetic Peaks in the Solar Wind at $1\mathrm{au}$. Astrophysical Journal, 2021, 921, 152.	1.6	4
24	Statistical Study of Small-scale Magnetic Holes in the Upstream Regime of the Martian Bow Shock. Astrophysical Journal, 2021, 921, 153.	1.6	6
25	Parametric Dependence of Polarization Reversal Effects on the Particle Pitch Angle Scattering by EMIC Waves. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029966.	0.8	4
26	Effects of the Solar Wind Dynamic Pressure on the Martian Topside Ion Distribution: Implications on the Variability of Bulk Ion Outflow. Astrophysical Journal, 2021, 922, 231.	1.6	4
27	Spatially Highly Resolved Solar-wind-induced Magnetic Field on Venus. Astrophysical Journal, 2021, 923, 73.	1.6	2
28	The correlation length of ULF waves around Venus: VEX observations. Planetary and Space Science, 2020, 180, 104761.	0.9	1
29	Statistical Properties of Subâ€ion Magnetic Holes in the Solar Wind at 1ÂAU. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028320.	0.8	18
30	Study of the Electron Velocity Inside Sub″onâ€Scale Magnetic Holes in the Solar Wind by MMS Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028386.	0.8	15
31	Foreshock Cavities at Venus and Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028023.	0.8	7
32	Survey of 1-Hz waves in the near-Venusian space: Venus Express observations. Planetary and Space Science, 2020, 187, 104933.	0.9	4
33	The BepiColombo–Mio Magnetometer en Route to Mercury. Space Science Reviews, 2020, 216, 1.	3.7	19
34	Mars Orbiter magnetometer of China's First Mars Mission Tianwen-1. Earth and Planetary Physics, 2020, 4, 384-389.	0.4	24
35	The Chinese Mars ROVER Fluxgate Magnetometers. Space Science Reviews, 2020, 216, 1.	3.7	20
36	Roles of electrons and ions in formation of the current in mirror-mode structures in the terrestrial plasma sheet: Magnetospheric Multiscale observations. Annales Geophysicae, 2020, 38, 309-318.	0.6	15

#	Article	IF	Citations
37	Turbulence Near the Venusian Bow Shock: Venus Express Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027190.	0.8	8
38	The Demagnetization of the Venusian Ionosphere under Nearly Flow-aligned Interplanetary Magnetic Fields. Astrophysical Journal, 2020, 900, 63.	1.6	9
39	Three-dimensional Geometry of the Electron-scale Magnetic Hole in the Solar Wind. Astrophysical Journal Letters, 2020, 904, L11.	3.0	15
40	Coupling between the Magnetospheric Dipolarization Front and the Earth's Ionosphere by Ultralow-frequency Waves. Astrophysical Journal Letters, 2020, 895, L13.	3.0	3
41	Propagation of EMIC Waves Inside the Plasmasphere: A Twoâ€Event Study. Journal of Geophysical Research: Space Physics, 2019, 124, 8396-8415.	0.8	5
42	Multiple-point Modeling the Parker Spiral Configuration of the Solar Wind Magnetic Field at the Solar Maximum of Solar Cycle 24. Astrophysical Journal, 2019, 884, 102.	1.6	9
43	Proton Temperature Anisotropies in the Plasma Environment of Venus. Journal of Geophysical Research: Space Physics, 2019, 124, 3312-3330.	0.8	14
44	Heavy Ion Flows in the Upper Ionosphere of the Venusian North Pole. Journal of Geophysical Research: Space Physics, 2019, 124, 4597-4607.	0.8	4
45	Carriers of the Fieldâ€Aligned Currents in the Plasma Sheet Boundary Layer: An MMS Multicase Study. Journal of Geophysical Research: Space Physics, 2019, 124, 2873-2886.	0.8	9
46	Observations of the Venus Dramatic Response to an Extremely Strong Interplanetary Coronal Mass Ejection. Astrophysical Journal, 2019, 876, 84.	1.6	10
47	A Statistical Study on the Properties of Dips Ahead of Dipolarization Fronts Observed by MMS. Journal of Geophysical Research: Space Physics, 2019, 124, 139-150.	0.8	20
48	The Induced Global Looping Magnetic Field on Mars. Astrophysical Journal Letters, 2019, 871, L27.	3.0	20
49	Small Spatialâ€Scale Fieldâ€Aligned Currents in the Plasma Sheet Boundary Layer Surveyed by Magnetosphere Multiscale Spacecraft. Journal of Geophysical Research: Space Physics, 2019, 124, 9976-9985.	0.8	9
50	Dipolarization Fronts: Tangential Discontinuities? On the Spatial Range of Validity of the MHD Jump Conditions. Journal of Geophysical Research: Space Physics, 2019, 124, 9963-9975.	0.8	10
51	Effects of the solar wind and the solar EUV flux on O+ escape rates from Venus. Icarus, 2019, 321, 379-387.	1.1	19
52	Solar Wind Directional Change Triggering Flapping Motions of the Current Sheet: MMS Observations. Geophysical Research Letters, 2019, 46, 64-70.	1.5	25
53	A low-energy ion spectrometer with half-space entrance for three-axis stabilized spacecraft. Science China Technological Sciences, 2019, 62, 1015-1027.	2.0	5
54	Measurement of plasma channels in the Venus wake. Icarus, 2019, 321, 1026-1037.	1.1	7

#	Article	IF	CITATIONS
55	Understanding the Twist Distribution Inside Magnetic Flux Ropes by Anatomizing an Interplanetary Magnetic Cloud. Journal of Geophysical Research: Space Physics, 2018, 123, 3238-3261.	0.8	54
56	The Quasiâ€monochromatic ULF Wave Boundary in the Venusian Foreshock: Venus Express Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 374-384.	0.8	5
57	Solar Wind Induced Waves in the Skies of Mars: Ionospheric Compression, Energization, and Escape Resulting From the Impact of Ultralow Frequency Magnetosonic Waves Generated Upstream of the Martian Bow Shock. Journal of Geophysical Research: Space Physics, 2018, 123, 7241-7256.	0.8	32
58	The Response of the Venusian Plasma Environment to the Passage of an ICME: Hybrid Simulation Results and Venus Express Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3580-3601.	0.8	8
59	Magnetic Field near Venus: Comparison between Solar Cycle 24 and Previous Cycles. Astrophysical Journal, 2018, 867, 129.	1.6	11
60	Magnetic Fluctuations and Turbulence in the Venusian Magnetosheath Downstream of Different Types of Bow Shock. Journal of Geophysical Research: Space Physics, 2018, 123, 8219-8226.	0.8	11
61	Solar cycle variation of the venus magnetic barrier. Planetary and Space Science, 2018, 158, 53-62.	0.9	13
62	A Statistical Study of Ionospheric Boundary Wave Formation at Venus. Journal of Geophysical Research: Space Physics, 2018, 123, 7668-7685.	0.8	4
63	Highâ€latitude Pi2 pulsations associated with kinkâ€like neutral sheet oscillations. Journal of Geophysical Research: Space Physics, 2017, 122, 2889-2899.	0.8	17
64	Spontaneous hot flow anomalies at Mars and Venus. Journal of Geophysical Research: Space Physics, 2017, 122, 9910-9923.	0.8	15
65	Ultra low frequency waves at Venus: Observations by the Venus Express spacecraft. Planetary and Space Science, 2017, 146, 55-65.	0.9	18
66	Characteristics of ionospheric flux rope at the terminator observed by Venus Express. Journal of Geophysical Research: Space Physics, 2017, 122, 8858-8867.	0.8	7
67	Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory. Space Weather, 2017, 15, 955-970.	1.3	65
68	Statistical study of lowâ€frequency magnetic field fluctuations near Venus during the solar cycle. Journal of Geophysical Research: Space Physics, 2017, 122, 8409-8418.	0.8	7
69	A study of ionopause perturbation and associated boundary wave formation at Venus. Journal of Geophysical Research: Space Physics, 2017, 122, 4284-4298.	0.8	2
70	Numerical simulation on the multiple dipolarization fronts in the magnetotail. Physics of Plasmas, 2017, 24, .	0.7	2
71	Ablation of Venusian oxygen ions by unshocked solar wind. Science Bulletin, 2017, 62, 1669-1672.	4.3	7
72	Occurrence rate of dipolarization fronts in the plasma sheet: Cluster observations. Annales Geophysicae, 2017, 35, 1015-1022.	0.6	6

#	Article	IF	CITATIONS
73	A statistical study on the shape and position of the magnetotail neutral sheet. Annales Geophysicae, 2016, 34, 303-311.	0.6	22
74	Weak, Quiet Magnetic Fields Seen in the Venus Atmosphere. Scientific Reports, 2016, 6, 23537.	1.6	12
75	Properties of planetward ion flows in Venus' magnetotail. Icarus, 2016, 274, 73-82.	1.1	25
76	Mirror mode structures ahead of dipolarization front near the neutral sheet observed by Cluster. Geophysical Research Letters, 2016, 43, 8853-8858.	1.5	28
77	Statistical features of the global polarity reversal of the Venusian induced magnetosphere in response to the polarity change in interplanetary magnetic field. Journal of Geophysical Research: Space Physics, 2016, 121, 3951-3962.	0.8	11
78	EMVIM: An empirical model for the magnetic field configuration near Venus. Journal of Geophysical Research: Space Physics, 2016, 121, 3362-3380.	0.8	3
79	Hemispheric asymmetry in the nearâ€Venusian magnetotail during solar maximum. Journal of Geophysical Research: Space Physics, 2016, 121, 4542-4547.	0.8	8
80	Characteristics of quasiâ€monochromatic ULF waves in the Venusian foreshock. Journal of Geophysical Research: Space Physics, 2016, 121, 7385-7397.	0.8	13
81	Statistical study on ultralowâ€frequency waves in the magnetotail lobe observed by Cluster. Journal of Geophysical Research: Space Physics, 2016, 121, 5319-5332.	0.8	6
82	An induced global magnetic field looping around the magnetotail of Venus. Journal of Geophysical Research: Space Physics, 2016, 121, 688-698.	0.8	13
83	Mirror mode waves in Venus's magnetosheath: solar minimum vs. solar maximum. Annales Geophysicae, 2016, 34, 1099-1108.	0.6	29
84	Periodic variations of oxygen EUV dayglow in the upper atmosphere of Venus: Hisaki/EXCEED observations. Journal of Geophysical Research E: Planets, 2015, 120, 2037-2052.	1.5	14
85	The flapping motion of the Venusian magnetotail: Venus Express observations. Journal of Geophysical Research: Space Physics, 2015, 120, 5593-5602.	0.8	38
86	INERTIAL RANGE TURBULENCE OF FAST AND SLOW SOLAR WIND AT 0.72 AU AND SOLAR MINIMUM. Astrophysical Journal Letters, 2015, 804, L41.	3.0	5
87	Technique for diagnosing the flapping motion of magnetotail current sheets based on singleâ€point magnetic field analysis. Journal of Geophysical Research: Space Physics, 2015, 120, 3462-3474.	0.8	25
88	Evolution of Kelvin-Helmholtz instability at Venus in the presence of the parallel magnetic field. Physics of Plasmas, 2015, 22, .	0.7	3
89	The Venus–solar wind interaction: Is it purely ionospheric?. Planetary and Space Science, 2015, 119, 36-42.	0.9	9
90	Statistical investigation on the power-law behavior of magnetic fluctuations in the Venusian magnetosheath. Earth, Planets and Space, 2015, 67, .	0.9	9

#	Article	IF	Citations
91	Time delay of interplanetary magnetic field penetration into Earth's magnetotail. Journal of Geophysical Research: Space Physics, 2015, 120, 3406-3414.	0.8	25
92	A statistical study of the lowâ€altitude ionospheric magnetic fields over the north pole of Venus. Journal of Geophysical Research: Space Physics, 2015, 120, 6218-6229.	0.8	7
93	Solar zenith angleâ€dependent asymmetries in Venusian bow shock location revealed by Venus Express. Journal of Geophysical Research: Space Physics, 2015, 120, 4446-4451.	0.8	11
94	Spatial distribution of magnetic fluctuation power with period 40 to 600 s in the magnetosphere observed by THEMIS. Journal of Geophysical Research: Space Physics, 2015, 120, 9281-9293.	0.8	11
95	In situ observations of multistage electron acceleration driven by magnetic reconnection. Journal of Geophysical Research: Space Physics, 2015, 120, 6320-6331.	0.8	28
96	Characterizing the lowâ€altitude magnetic belt at Venus: Complementary observations from the Pioneer Venus Orbiter and Venus Express. Journal of Geophysical Research: Space Physics, 2015, 120, 2232-2240.	0.8	15
97	A statistical analysis of Pi2â€band waves in the plasma sheet and their relation to magnetospheric drivers. Journal of Geophysical Research: Space Physics, 2015, 120, 6167-6175.	0.8	21
98	Proton and alpha particle precipitation onto the upper atmosphere of Venus. Planetary and Space Science, 2015, 113-114, 369-377.	0.9	22
99	The shape of the Venusian bow shock at solar minimum and maximum: Revisit based on VEX observations. Planetary and Space Science, 2015, 109-110, 32-37.	0.9	23
100	Modeling the Earth's magnetosphere under the influence of solar wind with due northward IMF by the AMR-CESE-MHD model. Science China Earth Sciences, 2015, 58, 1235-1242.	2.3	8
101	Transmission of largeâ€nmplitude ULF waves through a quasiâ€parallel shock at Venus. Journal of Geophysical Research: Space Physics, 2014, 119, 237-245.	0.8	26
102	Magnetic fields in the Venus ionosphere: Dependence on the IMF directionâ€"Venus express observations. Journal of Geophysical Research: Space Physics, 2014, 119, 7587-7600.	0.8	20
103	Mirror mode structures near Venus and Comet P/Halley. Annales Geophysicae, 2014, 32, 651-657.	0.6	33
104	Morphology of magnetic field in nearâ€Venus magnetotail: Venus express observations. Journal of Geophysical Research: Space Physics, 2014, 119, 8838-8847.	0.8	34
105	Observation of shocks associated with CMEs in 2007. Annales Geophysicae, 2014, 32, 223-230.	0.6	0
106	The structure of the Venusian current sheet. Planetary and Space Science, 2014, 96, 81-89.	0.9	16
107	Observation of double layer in the separatrix region during magnetic reconnection. Geophysical Research Letters, 2014, 41, 4851-4858.	1.5	48
108	COMBINED MULTIPOINT REMOTE AND IN SITU OBSERVATIONS OF THE ASYMMETRIC EVOLUTION OF A FAST SOLAR CORONAL MASS EJECTION. Astrophysical Journal Letters, 2014, 790, L6.	3.0	45

#	Article	IF	CITATIONS
109	The evolution of coâ€orbiting material in the orbit of 2201 Oljato from 1980 to 2012 as deduced from Pioneer Venus Orbiter and Venus Express magnetic records. Meteoritics and Planetary Science, 2014, 49, 28-35.	0.7	18
110	Magnetic fields in the Mars ionosphere of a noncrustal origin: Magnetization features. Geophysical Research Letters, 2014, 41, 6329-6334.	1.5	7
111	IMF control of the location of Venusian bow shock: The effect of the magnitude of IMF component tangential to the bow shock surface. Journal of Geophysical Research: Space Physics, 2014, 119, 9464-9475.	0.8	21
112	A survey of hot flow anomalies at Venus. Journal of Geophysical Research: Space Physics, 2014, 119, 978-991.	0.8	21
113	Correlation of core field polarity of magnetotail flux ropes with the IMF <i>B_y</i> : Reconnection guide field dependency. Journal of Geophysical Research: Space Physics, 2014, 119, 2933-2944.	0.8	23
114	The extension of ionospheric holes into the tail of Venus. Journal of Geophysical Research: Space Physics, 2014, 119, 6940-6953.	0.8	17
115	Flapping current sheet with superposed waves seen in space and on the ground. Journal of Geophysical Research: Space Physics, 2014, 119, 10,078.	0.8	22
116	A high resolution lithospheric magnetic field model over China. Science China Earth Sciences, 2013, 56, 1759-1768.	2.3	11
117	Comparison between magnetic coplanarity and MVA methods in determining the normal of Venusian bow shock. Science Bulletin, 2013, 58, 2469-2472.	1.7	3
118	Toroidal and poloidal magnetic fields at Venus. Venus Express observations. Planetary and Space Science, 2013, 87, 19-29.	0.9	16
119	Venus Express observations of ULF and ELF waves in the Venus ionosphere: Wave properties and sources. Icarus, 2013, 226, 1527-1537.	1.1	11
120	Electromagnetic waves observed on a flight over a Venus electrical storm. Geophysical Research Letters, 2013, 40, 216-220.	1.5	6
121	Kinetic analysis of the energy transport of bursty bulk flows in the plasma sheet. Journal of Geophysical Research: Space Physics, 2013, 118, 313-320.	0.8	86
122	Method for inferring the axis orientation of cylindrical magnetic flux rope based on singleâ€point measurement. Journal of Geophysical Research: Space Physics, 2013, 118, 271-283.	0.8	18
123	Electric structure of dipolarization fronts associated with interchange instability in the magnetotail. Journal of Geophysical Research: Space Physics, 2013, 118, 6019-6025.	0.8	32
124	Two different types of plasmoids in the plasma sheet: Cluster multisatellite analysis application. Journal of Geophysical Research: Space Physics, 2013, 118, 5437-5444.	0.8	19
125	Venus ion outflow estimates at solar minimum: Influence of reference frames and disturbed solar wind conditions. Journal of Geophysical Research: Space Physics, 2013, 118, 3592-3601.	0.8	30
126	The proton temperature anisotropy associated with bursty bulk flows in the magnetotail. Journal of Geophysical Research: Space Physics, 2013, 118, 4875-4883.	0.8	12

#	Article	IF	Citations
127	Slow magnetosonic waves detected in reconnection diffusion region in the Earth's magnetotail. Journal of Geophysical Research: Space Physics, 2013, 118, 1659-1666.	0.8	35
128	Asymmetries of the magnetic field line draping shape around Venus. Journal of Geophysical Research: Space Physics, 2013, 118, 6915-6920.	0.8	18
129	A statistical study of electron acceleration behind the dipolarization fronts in the magnetotail. Journal of Geophysical Research: Space Physics, 2013, 118, 4804-4810.	0.8	74
130	Plasma in the near Venus tail: Venus Express observations. Journal of Geophysical Research: Space Physics, 2013, 118, 7624-7634.	0.8	31
131	THE ROLE OF PICKUP IONS ON THE STRUCTURE OF THE VENUSIAN BOW SHOCK AND ITS IMPLICATIONS FOR THE TERMINATION SHOCK. Astrophysical Journal Letters, 2013, 773, L24.	3.0	6
132	Solar windâ€driven plasma fluxes from the Venus ionosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 7497-7506.	0.8	6
133	Large amplitude nonlinear waves in Venus magnetosheath. Journal of Geophysical Research: Space Physics, 2013, 118, 1706-1710.	0.8	3
134	Dependence of O ⁺ escape rate from the Venusian upper atmosphere on IMF directions. Geophysical Research Letters, 2013, 40, 1682-1685.	1.5	39
135	Observation of multiple subâ€cavities adjacent to single separatrix. Geophysical Research Letters, 2013, 40, 2511-2517.	1.5	27
136	On the retreat of near-Earth neutral line during substorm expansion phase: a THEMIS case study during the 9 January 2008 substorm. Annales Geophysicae, 2012, 30, 143-151.	0.6	6
137	MULTI-POINT SHOCK AND FLUX ROPE ANALYSIS OF MULTIPLE INTERPLANETARY CORONAL MASS EJECTIONS AROUND 2010 AUGUST 1 IN THE INNER HELIOSPHERE. Astrophysical Journal, 2012, 758, 10.	1.6	109
138	Giant flux ropes observed in the magnetized ionosphere at Venus. Geophysical Research Letters, 2012, 39, .	1.5	16
139	The transterminator ion flow at Venus at solar minimum. Planetary and Space Science, 2012, 73, 341-346.	0.9	1
140	A teardrop-shaped ionosphere at Venus in tenuous solar wind. Planetary and Space Science, 2012, 73, 254-261.	0.9	15
141	Bursty escape fluxes in plasma sheets of Mars and Venus. Geophysical Research Letters, 2012, 39, .	1.5	48
142	Dynamics of longâ€period ULF waves in the plasma sheet: Coordinated space and ground observations. Journal of Geophysical Research, 2012, 117, .	3.3	15
143	Hot flow anomalies at Venus. Journal of Geophysical Research, 2012, 117, .	3.3	35
144	Observations of quasiâ€perpendicular propagating electromagnetic waves near the ionopause current sheet of Venus. Journal of Geophysical Research, 2012, 117, .	3.3	1

#	Article	IF	CITATIONS
145	Profile of strong magnetic field <i>B</i> _{<i>y</i>} component in magnetotail current sheets. Journal of Geophysical Research, 2012, 117, .	3.3	33
146	Short largeâ€amplitude magnetic structures (SLAMS) at Venus. Journal of Geophysical Research, 2012, 117, .	3.3	17
147	MORPHOLOGICAL EVOLUTION OF A THREE-DIMENSIONAL CORONAL MASS EJECTION CLOUD RECONSTRUCTED FROM THREE VIEWPOINTS. Astrophysical Journal, 2012, 751, 18.	1.6	48
148	Magnetic Reconnection in the Near Venusian Magnetotail. Science, 2012, 336, 567-570.	6.0	109
149	Plasma transition at the flanks of the Venus ionosheath: Evidence from the Venus Express data. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	8
150	Proton cyclotron wave generation mechanisms upstream of Venus. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	26
151	Unusual nonlinear waves in the Venusian magnetosheath. Journal of Geophysical Research, 2011, 116, n/a - n/a .	3.3	13
152	Velocity distributions of superthermal electrons fitted with a power law function in the magnetosheath: Cluster observations. Journal of Geophysical Research, 2011, 116, .	3.3	14
153	Suprathermal electron spectra in the Venus ionosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
154	Measurements of the ion escape rates from Venus for solar minimum. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	86
155	Statistical survey on the magnetic structure in magnetotail current sheets. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	55
156	O ⁺ outflow channels around Venus controlled by directions of the interplanetary magnetic field: Observations of high energy O ⁺ ions around the terminator. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	22
157	Atmospheric erosion of Venus during stormy space weather. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	60
158	Occurrence rate of magnetic holes between 0.72 and 1 AU: comparative study of Cluster and VEX data. Annales Geophysicae, 2011, 29, 717-722.	0.6	10
159	ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO <i>>STEREO</i> >OBSERVATIONS OF THE 2009 FEBRUARY 13 ERUPTION. Astrophysical Journal, 2011, 741, 34.	1.6	51
160	Comparative study of ion cyclotron waves at Mars, Venus and Earth. Planetary and Space Science, 2011, 59, 1039-1047.	0.9	31
161	Venus lightning: Comparison with terrestrial lightning. Planetary and Space Science, 2011, 59, 965-973.	0.9	35
162	Comparative investigation of the terrestrial and Venusian magnetopause: Kinetic modeling and experimental observations by Cluster and Venus Express. Planetary and Space Science, 2011, 59, 1028-1038.	0.9	5

#	Article	IF	CITATIONS
163	The relations between density of FACs in the plasma sheet boundary layers and Kp index. Science China Technological Sciences, 2011, 54, 2987-2992.	2.0	6
164	Magnetic states of the ionosphere of Venus observed by Venus Express. Planetary and Space Science, 2011, 59, 327-337.	0.9	22
165	Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars. Annales Geophysicae, 2011, 29, 511-528.	0.6	22
166	Spatial scales of the magnetic ramp at the Venusian bow shock. Annales Geophysicae, 2011, 29, 2081-2088.	0.6	3
167	Exploring planetary magnetic environments using magnetically unclean spacecraft: a systems approach to VEX MAG data analysis. Annales Geophysicae, 2011, 29, 639-647.	0.6	34
168	Magnetic field investigation of Mercury's magnetosphere and the inner heliosphere by MMO/MGF. Planetary and Space Science, 2010, 58, 279-286.	0.9	29
169	Interplanetary coronal mass ejection influence on high energy pick-up ions at Venus. Planetary and Space Science, 2010, 58, 1784-1791.	0.9	27
170	Comparison study of magnetic flux ropes in the ionospheres of Venus, Mars and Titan. Icarus, 2010, 206, 174-181.	1.1	20
171	Cluster-C1 observations on the geometrical structure of linear magnetic holes in the solar wind at 1 AU. Annales Geophysicae, 2010, 28, 1695-1702.	0.6	37
172	Corrigendum to "Substorm activity in Venus's magnetotail" published in Ann. Geophys., 27, 2321–2330, doi:10.5194/angeo-27-2321-2009, 2009. Annales Geophysicae, 2010, 28, 1877-1878.	0.6	5
173	Southâ€north asymmetry of fieldâ€aligned currents in the magnetotail observed by Cluster. Journal of Geophysical Research, 2010, 115, .	3.3	34
174	Venusian bow shock as seen by the ASPERAâ€4 ion instrument on Venus Express. Journal of Geophysical Research, 2010, 115, .	3.3	9
175	Hemispheric asymmetry of the magnetic field wrapping pattern in the Venusian magnetotail. Geophysical Research Letters, 2010, 37, .	1.5	61
176	Statistical study of lowâ€frequency magnetic field fluctuations near Venus under the different interplanetary magnetic field orientations. Journal of Geophysical Research, 2010, 115, .	3.3	16
177	Low-frequency magnetic field fluctuations in Venus' solar wind interaction region: Venus Express observations. Annales Geophysicae, 2010, 28, 951-967.	0.6	20
178	Cluster and Double Star multipoint observations of a plasma bubble. Annales Geophysicae, 2009, 27, 725-743.	0.6	54
179	Substorm activity in Venus's magnetotail. Annales Geophysicae, 2009, 27, 2321-2330.	0.6	18
180	Mirror waves and mode transition observed in the magnetosheath by Double Star TC-1. Annales Geophysicae, 2009, 27, 351-355.	0.6	4

#	Article	IF	CITATIONS
181	Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations?. Astronomy and Astrophysics, 2009, 506, 399-410.	2.1	135
182	Oxygen ion escape from Venus in a global hybrid simulation: role of the ionospheric O ⁺ ions. Annales Geophysicae, 2009, 27, 4333-4348.	0.6	31
183	Atmosphere and Water Loss from Early Mars Under Extreme Solar Wind and Extreme Ultraviolet Conditions. Astrobiology, 2009, 9, 55-70.	1.5	86
184	Hybrid simulations of the O+ ion escape from Venus: Influence of the solar wind density and the IMF x component. Advances in Space Research, 2009, 43, $1436-1441$.	1.2	16
185	Venus express: Highlights of the nominal mission. Solar System Research, 2009, 43, 185-209.	0.3	24
186	Magnetosheath fluctuations at Venus for two extreme orientations of the interplanetary magnetic field. Geophysical Research Letters, 2009, 36, .	1.5	14
187	MESSENGER and Venus Express observations of the solar wind interaction with Venus. Geophysical Research Letters, 2009, 36, .	1.5	37
188	Tsallis distribution of the interplanetary magnetic field at 0.72 AU: Venus Express observation. Geophysical Research Letters, 2009, 36, .	1.5	0
189	Disappearing induced magnetosphere at Venus: Implications for closeâ€in exoplanets. Geophysical Research Letters, 2009, 36, .	1.5	42
190	Mirror mode structures in the solar wind at 0.72 AU. Journal of Geophysical Research, 2009, 114, .	3.3	43
191	O ⁺ ion flow below the magnetic barrier at Venus post terminator. Journal of Geophysical Research, 2009, 114, .	3.3	8
192	Plasma environment of Venus: Comparison of Venus Express ASPERAâ€4 measurements with 3â€D hybrid simulations. Journal of Geophysical Research, 2009, 114, .	3.3	37
193	Hydrogen in the extended Venus exosphere. Geophysical Research Letters, 2009, 36, .	1.5	21
194	STEREO observations of shock formation in the solar wind. Geophysical Research Letters, 2009, 36, .	1.5	17
195	Giant vortices lead to ion escape from Venus and reâ€distribution of plasma in the ionosphere. Geophysical Research Letters, 2009, 36, .	1.5	38
196	A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft. Journal of Geophysical Research, 2009, 114, .	3.3	65
197	Location of the bow shock and ion composition boundaries at Venus—initial determinations from Venus Express ASPERA-4. Planetary and Space Science, 2008, 56, 780-784.	0.9	64
198	The Venusian induced magnetosphere: A case study of plasma and magnetic field measurements on the Venus Express mission. Planetary and Space Science, 2008, 56, 796-801.	0.9	22

#	Article	IF	Citations
199	Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum. Planetary and Space Science, 2008, 56, 785-789.	0.9	71
200	Initial Venus Express magnetic field observations of the magnetic barrier at solar minimum. Planetary and Space Science, 2008, 56, 790-795.	0.9	61
201	Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006. Planetary and Space Science, 2008, 56, 873-880.	0.9	102
202	Ionospheric photoelectrons at Venus: Initial observations by ASPERA-4 ELS. Planetary and Space Science, 2008, 56, 802-806.	0.9	48
203	First observation of energetic neutral atoms in the Venus environment. Planetary and Space Science, 2008, 56, 807-811.	0.9	19
204	Comparative analysis of Venus and Mars magnetotails. Planetary and Space Science, 2008, 56, 812-817.	0.9	48
205	Upstream proton cyclotron waves at Venus. Planetary and Space Science, 2008, 56, 1293-1299.	0.9	9
206	Study of waves in the magnetotail region with cluster and DSP. Advances in Space Research, 2008, 41, 1593-1597.	1.2	8
207	Plasma sheet oscillations and their relation to substorm development: Cluster and double star TC1 case study. Advances in Space Research, 2008, 41, 1585-1592.	1.2	3
208	Electromagnetic waves observed by Venus Express at periapsis: Detection and analysis techniques. Advances in Space Research, 2008, 41, 113-117.	1.2	9
209	The plasma sheet and boundary layers under northward IMF: A multi-point and multi-instrument perspective. Advances in Space Research, 2008, 41, 1619-1629.	1.2	42
210	Modified gradiometer technique applied to Double Star (TC-1). Advances in Space Research, 2008, 41, 1579-1584.	1.2	14
211	Venus Express observes a new type of shock with pure kinematic relaxation. Geophysical Research Letters, 2008, 35, .	1.5	62
212	First upstream proton cyclotron wave observations at Venus. Geophysical Research Letters, 2008, 35, .	1.5	42
213	Characteristics of middle―to lowâ€latitude Pi2 excited by bursty bulk flows. Journal of Geophysical Research, 2008, 113, .	3.3	58
214	An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field. Measurement Science and Technology, 2008, 19, 055104.	1.4	64
215	First identification of mirror mode waves in Venus' magnetosheath?. Geophysical Research Letters, 2008, 35, .	1.5	50
216	Characteristic size and shape of the mirror mode structures in the solar wind at 0.72 AU. Geophysical Research Letters, 2008, 35, .	1.5	83

#	Article	IF	CITATIONS
217	Magnetic fluctuations and turbulence in the Venus magnetosheath and wake. Geophysical Research Letters, 2008, 35, .	1.5	20
218	Mirror mode waves: Messengers from the coronal heating region. Geophysical Research Letters, 2008, $35, .$	1.5	48
219	Behavior of current sheets at directional magnetic discontinuities in the solar wind at 0.72 AU. Geophysical Research Letters, 2008, 35, .	1.5	31
220	Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass ejections. Journal of Geophysical Research, 2008, 113, .	3.3	44
221	Venus Express observations of an atypically distant bow shock during the passage of an interplanetary coronal mass ejection. Journal of Geophysical Research, 2008, 113, .	3.3	24
222	Whistler mode waves from lightning on Venus: Magnetic control of ionospheric access. Journal of Geophysical Research, 2008, 113 , .	3.3	49
223	Proton cyclotron waves in the solar wind at Venus. Journal of Geophysical Research, 2008, 113, .	3.3	33
224	Mirrorâ€modeâ€like structures in Venus' induced magnetosphere. Journal of Geophysical Research, 2008, 113, .	3.3	44
225	Intermittent turbulence, noisy fluctuations, and wavy structures in the Venusian magnetosheath and wake. Journal of Geophysical Research, 2008, 113, .	3.3	34
226	Induced magnetosphere and its outer boundary at Venus. Journal of Geophysical Research, 2008, 113, .	3.3	44
227	An interpretation for the bipolar electric field structures parallel to the magnetic field observed in the auroral ionosphere. Annales Geophysicae, 2008, 26, 1431-1437.	0.6	8
228	Flow burst-induced Kelvin-Helmholtz waves in the terrestrial magnetotail. Geophysical Research Letters, 2007, 34, .	1.5	33
229	Venus Expressâ€"The first European mission to Venus. Planetary and Space Science, 2007, 55, 1636-1652.	0.9	212
230	The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission. Planetary and Space Science, 2007, 55, 1772-1792.	0.9	214
231	Lightning on Venus inferred from whistler-mode waves in the ionosphere. Nature, 2007, 450, 661-662.	13.7	99
232	Little or no solar wind enters Venus' atmosphere at solar minimum. Nature, 2007, 450, 654-656.	13.7	79
233	The loss of ions from Venus through the plasma wake. Nature, 2007, 450, 650-653.	13.7	168
234	Oscillatory magnetic flux tube slippage in the plasma sheet. Annales Geophysicae, 2006, 24, 1695-1704.	0.6	71

#	Article	IF	CITATIONS
235	Local structure of the magnetotail current sheet: 2001 Cluster observations. Annales Geophysicae, 2006, 24, 247-262.	0.6	220
236	Do BBFs contribute to inner magnetosphere dipolarizations: Concurrent Cluster and Double Star observations. Geophysical Research Letters, 2006, 33, .	1.5	50
237	Venus Express: Scientific goals, instrumentation, and scenario of the mission. Cosmic Research, 2006, 44, 334-348.	0.2	48
238	A statistical survey of the magnetotail current sheet. Advances in Space Research, 2006, 38, 1834-1837.	1.2	16
239	The Double Star magnetic field investigation: Overview of instrument performance and initial results. Advances in Space Research, 2006, 38, 1828-1833.	1.2	5
240	Venus Express science planning. Planetary and Space Science, 2006, 54, 1279-1297.	0.9	142
241	Magnetic field investigation of the Venus plasma environment: Expected new results from Venus Express. Planetary and Space Science, 2006, 54, 1336-1343.	0.9	235
242	Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planetary and Space Science, 2006, 54, 1445-1456.	0.9	106
243	Lightning detection on the Venus Express mission. Planetary and Space Science, 2006, 54, 1344-1351.	0.9	23
244	Alfvén waves in the near-PSBL lobe: Cluster observations. Annales Geophysicae, 2006, 24, 1001-1013.	0.6	13
245	ULF fluctuations of the geomagnetic field and ionospheric sounding measurements at low latitudes during the first CAWSES campaign. Annales Geophysicae, 2006, 24, 1455-1468.	0.6	16
246	Neutral sheet normal direction determination. Advances in Space Research, 2005, 36, 1940-1945.	1.2	13
247	Reconstruction of the magnetotail current sheet structure using multi-point Cluster measurements. Planetary and Space Science, 2005, 53, 237-243.	0.9	74
248	Multi-point observation of the high-speed flows in the plasma sheet. Advances in Space Research, 2005, 36, 1444-1447.	1.2	17
249	Electric current and magnetic field geometry in flapping magnetotail current sheets. Annales Geophysicae, 2005, 23, 1391-1403.	0.6	171
250	A statistical study on the correlations between plasma sheet and solar wind based on DSP explorations. Annales Geophysicae, 2005, 23, 2961-2966.	0.6	10
251	The Double Star magnetic field investigation: instrument design, performance and highlights of the first year's observations. Annales Geophysicae, 2005, 23, 2713-2732.	0.6	129
252	Double Star/Cluster observation of neutral sheet oscillations on 5 August 2004. Annales Geophysicae, 2005, 23, 2909-2914.	0.6	58

#	Article	IF	Citations
253	Observation of reconnection pulses by Cluster and Double Star. Annales Geophysicae, 2005, 23, 2921-2927.	0.6	4
254	Plasma flow channels with ULF waves observed by Cluster and Double Star. Annales Geophysicae, 2005, 23, 2929-2935.	0.6	27
255	Double Star TC-1 observations of component reconnection at the dayside magnetopause: a preliminary study. Annales Geophysicae, 2005, 23, 2889-2895.	0.6	32
256	Cluster and Double Star observations of dipolarization. Annales Geophysicae, 2005, 23, 2915-2920.	0.6	19
257	Electron pitch angle variations recorded at the high magnetic latitude boundary layer by the NUADU instrument on the TC-2 spacecraft. Annales Geophysicae, 2005, 23, 2953-2959.	0.6	1
258	Multiple flux rope events at the magnetopause observations by TC-1 on 18 March 2004. Annales Geophysicae, 2005, 23, 2897-2901.	0.6	4
259	Some aspects of man-made contamination on ULF measurements. Annales Geophysicae, 2004, 22, 1335-1345.	0.6	7
260	Compressional waves in the Earth's neutral sheet. Annales Geophysicae, 2004, 22, 303-315.	0.6	27
261	Multi-scale analysis of turbulence in the Earth's current sheet. Annales Geophysicae, 2004, 22, 2525-2533.	0.6	19
262	Wavelet analysis of magnetic turbulence in the Earth's plasma sheet. Physics of Plasmas, 2004, 11, 1333-1338.	0.7	34
263	Unusually Distant Bow Shock Encounters at Mars: Analysis of March 24, 1989 event. Space Science Reviews, 2004, 111, 233-243.	3.7	12
264	On the venus bow shock compressibility. Advances in Space Research, 2004, 33, 1920-1923.	1.2	12
265	Orientation and propagation of current sheet oscillations. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	128
266	Spatial scale of high-speed flows in the plasma sheet observed by Cluster. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	291
267	Magnetic turbulence in the plasma sheet. Journal of Geophysical Research, 2004, 109, .	3.3	83
268	An electrostatic model for nonlinear waves in the upper ionosphere. Advances in Space Research, 2003, 32, 303-308.	1.2	6
269	Cluster observation of a bifurcated current sheet. Geophysical Research Letters, 2003, 30, .	1.5	142
270	Kink mode oscillation of the current sheet. Geophysical Research Letters, 2003, 30, .	1.5	39

#	Article	IF	CITATIONS
271	Current sheet flapping motion and structure observed by Cluster. Geophysical Research Letters, 2003, 30, .	1.5	196
272	Current sheet structure near magnetic X-line observed by Cluster. Geophysical Research Letters, 2003, 30, .	1.5	240
273	A statistical study of compressional waves in the tail current sheet. Journal of Geophysical Research, 2003, 108, .	3.3	37
274	Multi-scale magnetic field intermittence in the plasma sheet. Annales Geophysicae, 2003, 21, 1955-1964.	0.6	62
275	A wavy twisted neutral sheet observed by CLUSTER. Geophysical Research Letters, 2002, 29, 5-1-5-4.	1.5	107
276	Motion of the dipolarization front during a flow burst event observed by Cluster. Geophysical Research Letters, 2002, 29, 3-1-3-4.	1.5	355
277	Fast flow during current sheet thinning. Geophysical Research Letters, 2002, 29, 55-1-55-4.	1.5	114
278	Polarization characteristics of dayside PI 2 pulsation on June 14, 1998. Advances in Space Research, 2002, 30, 2339-2343.	1.2	0
279	Evidence of the influence of equatorial martian crustal magnetization on the position of the planetary magnetotail boundary by phobos 2 data. Advances in Space Research, 2001, 28, 885-889.	1.2	12
280	Theoretical distribution of O+ ions in the martian magnetosphere. Advances in Space Research, 2001, 28, 891-896.	1.2	0
281	Low latitude magnetometer chain in China in the frame of the MERIDIAN project. Advances in Space Research, 2000, 25, 1353-1356.	1.2	3
282	A theoretical study on the O+ ions of the Martian magnetosphere. Chinese Astronomy and Astrophysics, 1999, 23, 377-383.	0.1	1
283	The effect of foreshock on the motion of the dayside magnetopause. Geophysical Research Letters, 1997, 24, 1439-1441.	1.5	28
284	Study of the solar wind deceleration upstream of the Martian terminator bow shock. Journal of Geophysical Research, 1997, 102, 2165-2173.	3.3	26
285	Dayside reconnection during IMF northward: A possible foreshock effect. Advances in Space Research, 1997, 19, 1943-1946.	1.2	7
286	Solar wind deceleration at Mars and Earth: A comparison. Advances in Space Research, 1997, 20, 133-136.	1.2	8
287	Intrinsic time scale for reconnection on the dayside magnetopause. Advances in Space Research, 1997, 19, 1913-1917.	1.2	13
288	Studies of the Martian bow shock response to the variation of the magnetosphere dimensions according to TAUS and MAGMA measurements aboard the Phobos 2 orbiter. Advances in Space Research, 1997, 20, 155-158.	1.2	11

#	Article	IF	CITATIONS
289	The interaction of the shocked solar wind and the planetary ions at Mars. Advances in Space Research, 1997, 20, 159-167.	1.2	0
290	Reply to "Comment on â€~A simple test of the induced nature of the Martian tail' by C. T. Russell et al.―b. P. L. Israelevich. Planetary and Space Science, 1997, 45, 749.	⁰ y _{0.9}	0
291	A study of the solar wind deceleration in the Earth's foreshock region. Advances in Space Research, 1995, 15, 137-140.	1.2	25
292	A simple test of the induced nature of the Martian tail. Planetary and Space Science, 1995, 43, 875-879.	0.9	13
293	The flaring of the Martian magnetotail observed by the Phobos 2 spacecraft. Geophysical Research Letters, 1994, 21, 1121-1124.	1.5	16
294	On the spatial range of validity of the gas dynamic model in the magnetosheath of Venus. Geophysical Research Letters, 1993, 20, 751-754.	1.5	9
295	Unusually distant bow shock encounters at Venus. Geophysical Research Letters, 1992, 19, 833-836.	1.5	38
296	Asymmetries in the location of the Venus and Mars bow shock. Geophysical Research Letters, 1991, 18, 127-129.	1.5	36
297	The magnetic barrier at Venus. Journal of Geophysical Research, 1991, 96, 11145-11153.	3.3	134
298	The solar cycle dependence of the location and shape of the Venus bow shock. Journal of Geophysical Research, 1990, 95, 14961-14967.	3.3	72