Fang-Fang Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/286456/publications.pdf

Version: 2024-02-01

133 papers 3,094 citations

28 h-index 189892 50 g-index

134 all docs

134 docs citations

times ranked

134

2733 citing authors

#	Article	IF	CITATIONS
1	1.2 kV/25 A Normally off P-N Junction/AlGaN/GaN HEMTs With Nanosecond Switching Characteristics and Robust Overvoltage Capability. IEEE Transactions on Power Electronics, 2022, 37, 26-30.	7.9	18
2	Majority and Minority Carrier Traps in NiO/ \hat{l}^2 -Ga ₂ O ₃ p ⁺ -n Heterojunction Diode. IEEE Transactions on Electron Devices, 2022, 69, 981-987.	3.0	23
3	70-νm-Body Ga ₂ O ₃ Schottky Barrier Diode With 1.48 K/W Thermal Resistance, 59 A Surge Current and 98.9% Conversion Efficiency. IEEE Electron Device Letters, 2022, 43, 773-776.	3.9	19
4	Dislocation dynamics in $\langle i \rangle \hat{1} \pm \langle i \rangle$ -Ga2O3 micropillars from selective-area epitaxy to epitaxial lateral overgrowth. Applied Physics Letters, 2022, 120, .	3.3	5
5	M-Plane α-Gaâ,,Oâ, f Solar-Blind Detector With Record-High Responsivity-Bandwidth Product and High-Temperature Operation Capability. IEEE Electron Device Letters, 2022, 43, 541-544.	3.9	11
6	Unlocking the Single-Domain Heteroepitaxy of Orthorhombic κ-Ga ₂ O ₃ via Phase Engineering. ACS Applied Electronic Materials, 2022, 4, 461-468.	4.3	8
7	4H-SiC <i>δ</i> n-i-p Extreme Ultraviolet Detector With Gradient Doping-Induced Surface Junction. IEEE Electron Device Letters, 2022, 43, 906-909.	3.9	2
8	Band alignment and polarization engineering in \hat{l}^2 -Ga2O3/GaN ferroelectric heterojunction. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	5.1	8
9	High sensitivity x-ray detectors based on 4H-SiC p-i-n structure with $80 < i > \hat{l} \frac{1}{4} < i> m$ thick intrinsic layer. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	1.2	1
10	Vertical Field-Plated NiO/Ga2O3 Heterojunction Power Diodes., 2021,,.		6
11	High Performance Quasi-Vertical GaN Junction Barrier Schottky Diode with Zero Reverse Recovery and Rugged Avalanche Capability. , 2021, , .		6
12	$\hat{l}^2\text{-}\text{Ga2O3}$ vertical heterojunction barrier Schottky diodes terminated with p-NiO field limiting rings. Applied Physics Letters, 2021, 118, .	3.3	65
13	<i>ln situ</i> heteroepitaxial construction and transport properties of lattice-matched <i>α</i> -lr2O3/ <i>α</i> -Ga2O3 p-n heterojunction. Applied Physics Letters, 2021, 118, .	3.3	24
14	High-Voltage Quasi-Vertical GaN Junction Barrier Schottky Diode With Fast Switching Characteristics. IEEE Electron Device Letters, 2021, 42, 974-977.	3.9	29
15	Demonstration of Avalanche and Surge Current Robustness in GaN Junction Barrier Schottky Diode With 600-V/10-A Switching Capability. IEEE Transactions on Power Electronics, 2021, 36, 12163-12167.	7.9	19
16	1.37 kV/12 A NiO/ \hat{l}^2 -Ga ₂ O ₃ Heterojunction Diode With Nanosecond Reverse Recovery and Rugged Surge-Current Capability. IEEE Transactions on Power Electronics, 2021, 36, 12213-12217.	7.9	77
17	Band Alignment and Enhanced Interfacial Conductivity Manipulated by Polarization in a Surfactant-Mediated Grown κ-Ga ₂ O ₃ /In ₂ O ₃ Heterostructure. ACS Applied Electronic Materials, 2021, 3, 795-803.	4.3	15
18	A self-powered solar-blind photodetector based on polyaniline/ <i>α</i> -Ga2O3 p–n heterojunction. Applied Physics Letters, 2021, 119, .	3.3	14

#	Article	IF	CITATIONS
19	Development of p-i-n Radiation Detectors based on Semi-Insulating 4H-SiC Substrate via Dual-face ion implantation. Solid-State Electronics, 2021, 187, 108196.	1.4	1
20	Strain-driven phase manipulation of $\langle i \rangle \hat{l} \pm \langle i \rangle$ - and $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Ga2O3 by nanoepitaxial lateral overgrowth on embedded $\langle i \rangle \hat{l} \pm \langle i \rangle$ -In2O3 submicron dots. Applied Physics Letters, 2021, 119, .	3.3	2
21	Field-Plated NiO/Ga ₂ O ₃ p-n Heterojunction Power Diodes With High-Temperature Thermal Stability and Near Unity Ideality Factors. IEEE Journal of the Electron Devices Society, 2021, 9, 1166-1171.	2.1	10
22	1000-W Resistive Energy Dissipating Capability Against Inductive Transients Demonstrated in Non-Avalanche AlGaN/GaN Schottky Diode. IEEE Electron Device Letters, 2021, 42, 1743-1746.	3.9	4
23	Over 1.8 GW/cm2 beveled-mesa NiO/ <i>\hat{l}^2</i> -Ga2O3 heterojunction diode with 800 V/10 A nanosecond switching capability. Applied Physics Letters, 2021, 119, .	3.3	24
24	Hybrid Light Emitters and UV Solarâ€Blind Avalanche Photodiodes based on IIIâ€Nitride Semiconductors. Advanced Materials, 2020, 32, e1904354.	21.0	34
25	High-\${k}\$ HfO ₂ -Based AlGaN/GaN MIS-HEMTs With Y ₂ O ₃ Interfacial Layer for High Gate Controllability and Interface Quality. IEEE Journal of the Electron Devices Society, 2020, 8, 15-19.	2.1	19
26	Gallium oxide-based solar-blind ultraviolet photodetectors. Semiconductor Science and Technology, 2020, 35, 023001.	2.0	73
27	Electronâ€Beamâ€Driven IIIâ€Nitride Plasmonic Nanolasers in the Deepâ€UV and Visible Region. Small, 2020, 16, 1906205.	10.0	10
28	A 1.86-kV double-layered NiO/ <i>β</i> -Ga2O3 vertical p–n heterojunction diode. Applied Physics Letters, 2020, 117, .	3.3	136
29	Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes. Chinese Physics Letters, 2020, 37, 068502.	3.3	2
30	Misfit epitaxial strain manipulated transport properties in cubic In2O3 hetero-epilayers. Applied Physics Letters, 2020, 117, 102104.	3.3	4
31	High-Performance 4H-SiC Schottky Photodiode With Semitransparent Grid-Electrode for EUV Detection. IEEE Photonics Technology Letters, 2020, 32, 791-794.	2.5	10
32	Fast Speed Ga2O3 Solar-blind Schottky Photodiodes with Large Sensitive Area. IEEE Electron Device Letters, 2020, , 1-1.	3.9	22
33	After-Pulse Characterizations of Geiger-Mode 4H-SiC Avalanche Photodiodes. IEEE Photonics Technology Letters, 2020, 32, 706-709.	2.5	5
34	Polarizationâ€Independent Indium Phosphide Nanowire Photodetectors. Advanced Optical Materials, 2020, 8, 2000514.	7.3	9
35	Band Alignment and Interface Recombination in NiO/ $\langle i \rangle$ $\hat{l}^2 \langle i \rangle$ -Ga $\langle sub \rangle$ 2 $\langle sub \rangle$ 0 $\langle sub \rangle$ 3 $\langle sub \rangle$ 7ype-II p-n Heterojunctions. IEEE Transactions on Electron Devices, 2020, 67, 3341-3347.	3.0	63
36	Phase tailoring and wafer-scale uniform hetero-epitaxy of metastable-phased corundum α-Ga2O3 on sapphire. Applied Surface Science, 2020, 513, 145871.	6.1	28

3

#	Article	IF	Citations
37	Anion Engineering Enhanced Response Speed and Tunable Spectral Responsivity in Gallium-Oxynitrides-Based Ultraviolet Photodetectors. ACS Applied Electronic Materials, 2020, 2, 808-816.	4.3	18
38	Highly Enhanced Inductive Current Sustaining Capability and Avalanche Ruggedness in GaN p-i-n Diodes With Shallow Bevel Termination. IEEE Electron Device Letters, 2020, 41, 469-472.	3.9	16
39	Property manipulation through pulsed laser annealing in high dose Mg-implanted GaN. Journal of Applied Physics, 2020, 128, .	2.5	5
40	Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses*. Chinese Physics B, 2019, 28, 098503.	1.4	2
41	On the origin of dislocation generation and annihilation in <i>$\hat{l}\pm >$</i> -Ga2O3 epilayers on sapphire. Applied Physics Letters, 2019, 115, .	3.3	37
42	Investigations of the gate instability characteristics in Schottky/ohmic type p-GaN gate normally-off AlGaN/GaN HEMTs. Applied Physics Express, 2019, 12, 121005.	2.4	9
43	Band alignment and band bending at $\langle i \rangle \hat{l} \pm \langle i \rangle$ -Ga2O3/ZnO n-n isotype hetero-interface. Applied Physics Letters, 2019, 115, .	3.3	25
44	Effect of Very High-Fluence Proton Radiation on 6H-SiC Photoconductive Proton Detectors. IEEE Electron Device Letters, 2019, 40, 1929-1932.	3.9	10
45	Si-based Multiband Terahertz Antennas. , 2019, , .		2
46	Highly Narrow-Band Polarization-Sensitive Solar-Blind Photodetectors Based on β-Ga ₂ O ₃ Single Crystals. ACS Applied Materials & Interfaces, 2019, 11, 7131-7137.	8.0	55
47	Realization of p-type gallium nitride by magnesium ion implantation for vertical power devices. Scientific Reports, 2019, 9, 8796.	3.3	24
48	Gate-first process compatible, high-quality <i>in situ</i> SiN _{<i>x</i>} for surface passivation and gate dielectrics in AlGaN/GaN MISHEMTs. Journal Physics D: Applied Physics, 2019, 52, 305105.	2.8	9
49	Carrier Transport and Gain Mechanisms in \$eta\$ –Ga ₂ O ₃ -Based Metal–Semiconductor–Metal Solar-Blind Schottky Photodetectors. IEEE Transactions on Electron Devices, 2019, 66, 2276-2281.	3.0	59
50	Investigation and active suppression of self-heating induced degradation in amorphous InGaZnO thin film transistors. Chinese Physics B, 2019, 28, 017303.	1.4	3
51	Transition of photoconductive and photovoltaic operation modes in amorphous Ga ₂ O ₃ -based solar-blind detectors tuned by oxygen vacancies. Chinese Physics B, 2019, 28, 028501.	1.4	26
52	Spatial Non-Uniform Hot Carrier Luminescence From 4H-SiC p-i-n Avalanche Photodiodes. IEEE Photonics Technology Letters, 2019, 31, 447-450.	2.5	6
53	Crosstalk Analysis of SiC Ultraviolet Single Photon Avalanche Photodiode Arrays. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	4
54	Heteroepitaxial growth of thick $\langle i \rangle \hat{l} \pm \langle i \rangle$ -Ga $\langle sub \rangle 2 \langle sub \rangle 0 \langle sub \rangle 3 \langle sub \rangle$ film on sapphire (0001) by MIST-CVD technique. Journal of Semiconductors, 2019, 40, 012804.	3.7	45

#	Article	IF	CITATIONS
55	Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photonics Research, 2019, 7, 381.	7.0	391
56	Magnesium ion-implantation-based gallium nitride p-i-n photodiode for visible-blind ultraviolet detection. Photonics Research, 2019, 7, B48.	7.0	36
57	Vertical 4H-SiC n-i-p-n APDs With Partial Trench Isolation. IEEE Photonics Technology Letters, 2018, 30, 805-808.	2.5	9
58	Low-threshold ultraviolet stimulated emissions from large-sized single crystalline ZnO transferable membranes. Optics Express, 2018, 26, 31965.	3.4	3
59	Vertically Emitting Indium Phosphide Nanowire Lasers. Nano Letters, 2018, 18, 3414-3420.	9.1	33
60	Avalanche Ruggedness of GaN p-i-n Diodes Grown on Sapphire Substrate. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800069.	1.8	7
61	Identification and modulation of electronic band structures of single-phase \hat{l}^2 -(AlxGa1 \hat{a}^2 x)2O3 alloys grown by laser molecular beam epitaxy. Applied Physics Letters, 2018, 113, .	3.3	43
62	Tailored Emission Properties of ZnTe/ZnTe:O/ZnO Core–Shell Nanowires Coupled with an Al Plasmonic Bowtie Antenna Array. ACS Nano, 2018, 12, 7327-7334.	14.6	8
63	4H-SiC Ultraviolet Avalanche Photodiodes With Small Gain Slope and Enhanced Fill Factor. IEEE Photonics Journal, 2017, 9, 1-8.	2.0	8
64	Distinct enhancement of sub-bandgap photoresponse through intermediate band in high dose implanted ZnTe:O alloys. Scientific Reports, 2017, 7, 44399.	3.3	10
65	Lasers: Manipulable and Hybridized, Ultralowâ€Threshold Lasing in a Plasmonic Laser Using Elliptical InGaN/GaN Nanorods (Adv. Funct. Mater. 37/2017). Advanced Functional Materials, 2017, 27, .	14.9	0
66	Solar-Blind Photodetector with High Avalanche Gains and Bias-Tunable Detecting Functionality Based on Metastable Phase α-Ga ₂ O ₃ /ZnO Isotype Heterostructures. ACS Applied Materials & Detection of the American Substitution of th	8.0	158
67	Chiral Metamaterials: A Terahertz Controlledâ€NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials (Advanced Optical Materials 18/2017). Advanced Optical Materials, 2017, 5, .	7.3	0
68	Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas. Scientific Reports, 2017, 7, 7503.	3.3	12
69	A Terahertz Controlledâ€NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials. Advanced Optical Materials, 2017, 5, 1700108.	7.3	15
70	Manipulable and Hybridized, Ultralowâ€Threshold Lasing in a Plasmonic Laser Using Elliptical InGaN/GaN Nanorods. Advanced Functional Materials, 2017, 27, 1703198.	14.9	23
71	Single Photon Counting Spatial Uniformity of 4H-SiC APD Characterized by SNOM-Based Mapping System. IEEE Photonics Technology Letters, 2017, 29, 1603-1606.	2.5	10
72	4H–SiC Avalanche Photodiode Linear Array Operating in Geiger Mode. IEEE Photonics Journal, 2017, 9, 1-7.	2.0	13

#	Article	IF	CITATIONS
73	Boosting Hot-Electron Extraction Through Deep Groove Perfect Absorber for Si-Based Photodetector. IEEE Photonics Technology Letters, 2017, 29, 1884-1887.	2.5	4
74	Analysis of Dark Count Mechanisms of 4H-SiC Ultraviolet Avalanche Photodiodes Working in Geiger Mode. IEEE Transactions on Electron Devices, 2017, 64, 4532-4539.	3.0	16
75	Highâ€voltage photoconductive semiconductor switches fabricated on semiâ€insulating HVPE GaN:Fe template. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 374-377.	0.8	7
76	Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays. Scientific Reports, 2016, 6, 23486.	3.3	21
77	Polarization-independent split bull's eye antennas for infrared nano-photodetectors. Scientific Reports, 2016, 6, 39106.	3.3	2
78	Split Bull's Eye Antenna for High-Speed Photodetector in the Range of Visible to Mid-Infrared. IEEE Photonics Technology Letters, 2016, 28, 1177-1180.	2.5	9
79	Bias stress instability involving subgap state transitions in a-IGZO Schottky barrier diodes. Journal Physics D: Applied Physics, 2016, 49, 395104.	2.8	16
80	Single nanowire green InGaN/GaN light emitting diodes. Nanotechnology, 2016, 27, 435205.	2.6	16
81	Electrical Instability of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors under Ultraviolet Illumination. Chinese Physics Letters, 2016, 33, 038502.	3.3	2
82	4H-SiC SACM Avalanche Photodiode With Low Breakdown Voltage and High UV Detection Efficiency. IEEE Photonics Journal, 2016, 8, 1-7.	2.0	15
83	High-Brightness Polarized Green InGaN/GaN Light-Emitting Diode Structure with Al-Coated p-GaN Grating. ACS Photonics, 2016, 3, 1912-1918.	6.6	28
84	High Fill-Factor 4H-SiC Avalanche Photodiodes With Partial Trench Isolation. IEEE Photonics Technology Letters, 2016, 28, 2526-2528.	2.5	16
85	High-Performance 4H-SiC p-i-n Ultraviolet Photodiode With p Layer Formed by Al Implantation. IEEE Photonics Technology Letters, 2016, 28, 1189-1192.	2.5	16
86	4H-SiC p-i-n Ultraviolet Avalanche Photodiodes Obtained by Al Implantation. IEEE Photonics Technology Letters, 2016, 28, 1185-1188.	2.5	20
87	Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes. Chinese Physics Letters, 2015, 32, 128501.	3.3	11
88	Demonstration of an AlGaN-based solar-blind high-voltage photoconductive switch. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 040601.	1.2	9
89	Frequency Performance of Ring Oscillators Based on a-IGZO Thin-Film Transistors. Chinese Physics Letters, 2015, 32, 047302.	3.3	8
90	Study on interface characteristics in amorphous indium–gallium–zinc oxide thin-film transistors by using low-frequency noise and temperature dependent mobility measurements. Solid-State Electronics, 2015, 109, 37-41.	1.4	8

#	Article	IF	Citations
91	Bloch surface plasmon enhanced blue emission from InGaN/GaN light-emitting diode structures with Al-coated GaN nanorods. Nanotechnology, 2015, 26, 125201.	2.6	6
92	Investigation of surface-plasmon coupled red light emitting $InGaN/GaN$ multi-quantum well with Ag nanostructures coated on GaN surface. Journal of Applied Physics, 2015, 117, .	2.5	10
93	The Effect of Oxygen Partial Pressure during Active Layer Deposition on Bias Stability of a-InGaZnO TFTs. Chinese Physics Letters, 2015, 32, 077303.	3.3	1
94	High-temperature and reliability performance of 4H-SiC Schottky-barrier photodiodes for UV detection. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	1.2	14
95	Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors. Chinese Physics B, 2015, 24, 077307.	1.4	4
96	Solar-blind ultraviolet band-pass filter based on metalâ€"dielectric multilayer structures. Chinese Physics B, 2014, 23, 074201.	1.4	7
97	Metal-semiconductor-metal ultraviolet photodetectors directly fabricated on semi-insulating GaN:Fe template grown by hydride vapor phase epitaxy. Sensors and Actuators A: Physical, 2014, 216, 308-311.	4.1	6
98	Large-Swing a-IGZO Inverter With a Depletion Load Induced by Laser Annealing. IEEE Electron Device Letters, 2014, 35, 1034-1036.	3.9	30
99	Second-order surface-plasmon assisted responsivity enhancement in germanium nano-photodetectors with bull's eye antennas. Optics Express, 2014, 22, 15949.	3.4	15
100	Off-state breakdown and leakage current transport analysis of AlGaN/GaN high electron mobility transistors. Microelectronics Reliability, 2014, 54, 2406-2409.	1.7	3
101	High-Temperature Single Photon Detection Performance of 4H-SiC Avalanche Photodiodes. IEEE Photonics Technology Letters, 2014, 26, 1136-1138.	2.5	53
102	Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultra-thin interfacial InGaZnO:N layer. Applied Physics Letters, 2013, 102, .	3.3	57
103	Temperature and gate bias dependence of carrier transport mechanisms in amorphous indium–gallium–zinc oxide thin film transistors. Solid-State Electronics, 2013, 86, 41-44.	1.4	18
104	High Quantum Efficiency GaN-Based p-i-n Ultraviolet Photodetectors Prepared on Patterned Sapphire Substrates. IEEE Photonics Technology Letters, 2013, 25, 652-654.	2.5	45
105	Spectrum broadening of high-efficiency second harmonic generation in cascaded photonic crystal microcavities. Optics Express, 2013, 21, 756.	3.4	2
106	Large-scale fabrication and luminescence properties of GaN nanostructures by a soft UV-curing nanoimprint lithography. Nanotechnology, 2013, 24, 405303.	2.6	29
107	High Deep-Ultraviolet Quantum Efficiency GaN Pâ€"lâ€"N Photodetectors with Thin P-GaN Contact Layer. Chinese Physics Letters, 2013, 30, 017302.	3.3	9
108	Vacuum Violet Photo-Response of AlGaN-Based Metal-Semiconductor-Metal Photodetectors. Chinese Physics Letters, 2013, 30, 117301.	3.3	2

#	Article	IF	CITATIONS
109	Temperature-dependent efficiency droop behaviors of GaN-based green light-emitting diodes. Chinese Physics B, 2013, 22, 047805.	1.4	10
110	GaN Schottky Barrier Diodes with High-Resistivity Edge Termination Formed by Boron Implantation. Chinese Physics Letters, 2013, 30, 057303.	3.3	2
111	High Quantum Efficiency Back-Illuminated AlGaN-Based Solar-Blind Ultraviolet p—i—n Photodetectors. Chinese Physics Letters, 2012, 29, 097302.	3.3	18
112	Electrical instability of amorphous indium-gallium-zinc oxide thin film transistors under monochromatic light illumination. Applied Physics Letters, 2012, 100, 243505.	3.3	82
113	Raman probing of competitive laser heating and local recrystallization effect in ZnO nanocrystals. Optics Express, 2012, 20, 23281.	3.4	9
114	Bias-Selective Dual-Operation-Mode Ultraviolet Schottky-Barrier Photodetectors Fabricated on High-Resistivity Homoepitaxial GaN. IEEE Photonics Technology Letters, 2012, 24, 2203-2205.	2.5	7
115	Split Bull's Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector. Nano Letters, 2011, 11, 1289-1293.	9.1	80
116	Photoresponse enhancement in nanoscale Ge photodetector through split bull's eye shaped plasmonic antenna., 2011,,.		0
117	Silicon photonic integrated circuits: from devices to integration. Proceedings of SPIE, 2011, , .	0.8	0
118	Light emission of 2D photonic crystal based on nanocrystal-Si/SiO 2 superlattice structure. Proceedings of SPIE, 2010, , .	0.8	1
119	Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector. Applied Physics Letters, 2010, 97, .	3.3	40
120	Nanometer germanium photodetector with aluminum surface plasmon antenna for enhanced photo-response. , 2010, , .		2
121	Second-harmonic generation in photonic crystals with a pair of epsilon-negative and mu-negative defects. Optics Express, 2009, 17, 6682.	3.4	5
122	Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO. Applied Physics Letters, 2009, 94, 011913.	3.3	49
123	Enhanced Vertical Light Extraction From Ultrathin Amorphous Si–Si\$_{3}\$N\$_{4}\$ Multilayers With Photonic Crystal Patterns. IEEE Photonics Technology Letters, 2009, 21, 91-93.	2,5	5
124	Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal. Applied Physics Letters, 2008, 92, 141115.	3.3	67
125	Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures. Physical Review B, 2008, 78, .	3.2	68
126	Strong vertical light output from thin silicon rich oxide/SiO2 multilayers via in-plane modulation of photonic crystal patterns. Applied Physics Letters, 2008, 93, 091901.	3.3	9

#	ARTICLE	IF	CITATION
127	Electromagnetic transmission through one-dimensional gratings with left-handed materials. Physical Review B, 2007, 75, .	3.2	8
128	Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits. Applied Physics Letters, 2007, 91, 111111.	3.3	75
129	Saturation effect and forward-dominant second-harmonic generation in single-defect photonic crystals with dual localizations. Optics Letters, 2006, 31, 3327.	3.3	3
130	Low-threshold and high-efficiency optical parametric oscillator using a one-dimensional single-defect photonic crystal with quadratic nonlinearity. Physical Review B, 2006, 73, .	3.2	5
131	Dual localizations for second-harmonic generations using left-handed materials. Applied Physics Letters, 2005, 87, 251104.	3.3	4
132	Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes. Physical Review B, 2004, 70, .	3.2	69
133	Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays. , 0, .		1