Elaine Fuchs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2863617/publications.pdf Version: 2024-02-01

		906	2127
211	49,893	116	203
papers	citations	h-index	g-index
225	225	225	42510
all docs	docs citations	times ranked	citing authors

FLAINE FLICHS

#	Article	IF	CITATIONS
1	Building and Maintaining the Skin. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040840.	5.5	30
2	Desmoplakin Maintains Transcellular Keratin Scaffolding and Protects From Intestinal Injury. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1181-1200.	4.5	7
3	Tissue stem cells: survival of the fittest. FASEB Journal, 2022, 36, .	0.5	0
4	Lymphatics act as a signaling hub to regulate intestinal stem cell activity. Cell Stem Cell, 2022, 29, 1067-1082.e18.	11.1	53
5	Inflammatory memory and tissue adaptation in sickness and in health. Nature, 2022, 607, 249-255.	27.8	55
6	Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature Immunology, 2021, 22, 2-6.	14.5	274
7	Dietary interventions as regulators of stem cell behavior in homeostasis and disease. Genes and Development, 2021, 35, 199-211.	5.9	18
8	Environmental control of lineage plasticity and stem cell memory. Current Opinion in Cell Biology, 2021, 69, 88-95.	5.4	17
9	Inflammatory adaptation in barrier tissues. Cell, 2021, 184, 3361-3375.	28.9	42
10	Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell, 2021, 28, 1758-1774.e8.	11.1	98
11	Skin Cancers and the Contribution of Rho GTPase Signaling Networks to Their Progression. Cancers, 2021, 13, 4362.	3.7	4
12	Highly efficient manipulation of nervous system gene expression with NEPTUNE. Cell Reports Methods, 2021, 1, 100043.	2.9	3
13	Stem cell progeny liaisons in regeneration. Nature Cell Biology, 2021, 23, 932-933.	10.3	0
14	Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science, 2021, 374, eabh2444.	12.6	56
15	Adult stem cells and regenerative medicine—a symposium report. Annals of the New York Academy of Sciences, 2020, 1462, 27-36.	3.8	43
16	Epithelial cells: liaisons of immunity. Current Opinion in Immunology, 2020, 62, 45-53.	5.5	72
17	Tissue Stem Cells: Architects of Their Niches. Cell Stem Cell, 2020, 27, 532-556.	11.1	137
18	BMP signaling: at the gate between activated melanocyte stem cells and differentiation. Genes and Development, 2020, 34, 1713-1734.	5.9	35

#	Article	IF	CITATIONS
19	Mechanics of a multilayer epithelium instruct tumour architecture and function. Nature, 2020, 585, 433-439.	27.8	99
20	A Metabolic Bottleneck for Stem Cell Transformation. Cell, 2020, 182, 1377-1378.	28.9	2
21	NFI transcription factors provide chromatin access to maintain stem cell identity while preventing unintended lineage fate choices. Nature Cell Biology, 2020, 22, 640-650.	10.3	52
22	High Throughput strategies Aimed at Closing the GAP in Our Knowledge of Rho GTPase Signaling. Cells, 2020, 9, 1430.	4.1	6
23	Liquid-liquid phase separation drives skin barrier formation. Science, 2020, 367, .	12.6	141
24	Defining trained immunity and its role in health and disease. Nature Reviews Immunology, 2020, 20, 375-388.	22.7	1,345
25	The aging skin microenvironment dictates stem cell behavior. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5339-5350.	7.1	101
26	Extracellular serine controls epidermal stem cell fate and tumour initiation. Nature Cell Biology, 2020, 22, 779-790.	10.3	83
27	Progenitors oppositely polarize WNT activators and inhibitors to orchestrate tissue development. ELife, 2020, 9, .	6.0	19
28	m6A RNA methylation impacts fate choices during skin morphogenesis. ELife, 2020, 9, .	6.0	25
29	Stem cell–driven lymphatic remodeling coordinates tissue regeneration. Science, 2019, 366, 1218-1225.	12.6	122
30	Distinct modes of cell competition shape mammalian tissue morphogenesis. Nature, 2019, 569, 497-502.	27.8	112
31	Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell, 2019, 177, 1172-1186.e14.	28.9	199
32	The cellular basis of mechanosensory Merkel-cell innervation during development. ELife, 2019, 8, .	6.0	24
33	WNT Signaling in Cancer Immunosurveillance. Trends in Cell Biology, 2019, 29, 44-65.	7.9	168
34	An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis. ELife, 2019, 8,	6.0	9
35	Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nature Reviews Genetics, 2018, 19, 311-325.	16.3	129
36	Temporal Layering of Signaling Effectors Drives Chromatin Remodeling during Hair Follicle Stem Cell Lineage Progression. Cell Stem Cell, 2018, 22, 398-413.e7.	11.1	85

#	Article	IF	CITATIONS
37	Stem cells: Aging and transcriptional fingerprints. Journal of Cell Biology, 2018, 217, 79-92.	5.2	61
38	Two to Tango: Dialog between Immunity and Stem Cells in Health and Disease. Cell, 2018, 175, 908-920.	28.9	170
39	Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress. Neurobiology of Disease, 2018, 116, 155-165.	4.4	89
40	The human CIB1–EVER1–EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. Journal of Experimental Medicine, 2018, 215, 2289-2310.	8.5	92
41	Skin Stem Cells in Silence, Action, and Cancer. Stem Cell Reports, 2018, 10, 1432-1438.	4.8	25
42	Stem cells repurpose proliferation to contain a breach in their niche barrier. ELife, 2018, 7, .	6.0	38
43	Coupling organelle inheritance with mitosis to balance growth and differentiation. Science, 2017, 355, .	12.6	100
44	Translation from unconventional $5\hat{a} \in 2$ start sites drives tumour initiation. Nature, 2017, 541, 494-499.	27.8	282
45	Epithelial-Mesenchymal Micro-niches Govern Stem Cell Lineage Choices. Cell, 2017, 169, 483-496.e13.	28.9	209
46	Stem Cell Lineage Infidelity Drives Wound Repair and Cancer. Cell, 2017, 169, 636-650.e14.	28.9	255
47	Structure of the ACF7 EF-Hand-GAR Module and Delineation of Microtubule Binding Determinants. Structure, 2017, 25, 1130-1138.e6.	3.3	15
48	Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature, 2017, 550, 475-480.	27.8	440
49	Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Developmental Cell, 2017, 43, 387-401.	7.0	314
50	Spatiotemporal antagonism in mesenchymal-epithelial signaling in sweat versus hair fate decision. Science, 2016, 354, .	12.6	129
51	Susan Lee Lindquist (1949–2016). Molecular Cell, 2016, 64, 851-853.	9.7	2
52	FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1506-15.	7.1	121
53	Impaired Epidermal to Dendritic T Cell Signaling Slows Wound Repair in Aged Skin. Cell, 2016, 167, 1323-1338.e14.	28.9	187
54	A Presenilin-2–ARF4 trafficking axis modulates Notch signaling during epidermal differentiation. Journal of Cell Biology, 2016, 214, 89-101.	5.2	23

#	Article	IF	CITATIONS
55	WNT-SHH Antagonism Specifies and Expands Stem Cells prior to Niche Formation. Cell, 2016, 164, 156-169.	28.9	142
56	The Yin and Yang of Chromatin Dynamics In Stem Cell Fate Selection. Trends in Genetics, 2016, 32, 89-100.	6.7	50
57	LIM Homeobox Domain 2 Is Required for Corneal Epithelial Homeostasis. Stem Cells, 2016, 34, 493-503.	3.2	5
58	Epithelial Skin Biology. Current Topics in Developmental Biology, 2016, 116, 357-374.	2.2	121
59	Strand-specific in vivo screen of cancer-associated miRNAs unveils a role for miR-21â^— in SCC progression. Nature Cell Biology, 2016, 18, 111-121.	10.3	53
60	A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression. Genome Biology, 2015, 16, 231.	8.8	81
61	Tissue patterning and cellular mechanics. Journal of Cell Biology, 2015, 211, 219-231.	5.2	88
62	ETS family transcriptional regulators drive chromatin dynamics and malignancy in squamous cell carcinomas. ELife, 2015, 4, e10870.	6.0	71
63	Epidermal development, growth control, and homeostasis in the face of centrosome amplification. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6311-20.	7.1	46
64	<i>TERT</i> promoter mutations and telomerase reactivation in urothelial cancer. Science, 2015, 347, 1006-1010.	12.6	255
65	TGF-β Promotes Heterogeneity and Drug Resistance in Squamous Cell Carcinoma. Cell, 2015, 160, 963-976.	28.9	401
66	Wdr1-mediated cell shape dynamics and cortical tension are essential for epidermal planar cellÂpolarity. Nature Cell Biology, 2015, 17, 592-604.	10.3	61
67	Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature, 2015, 521, 366-370.	27.8	350
68	Chronic centrosome amplification without tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6321-30.	7.1	70
69	An unconventional route to becoming a cell biologist. Molecular Biology of the Cell, 2015, 26, 3697-3699.	2.1	0
70	Cell biology: More than skin deep. Journal of Cell Biology, 2015, 209, 629-632.	5.2	11
71	Comparison of REST Cistromes across Human Cell Types Reveals Common and Context-Specific Functions. PLoS Computational Biology, 2014, 10, e1003671.	3.2	40
72	SOX9: a stem cell transcriptional regulator of secreted niche signaling factors. Genes and Development, 2014, 28, 328-341.	5.9	171

#	Article	lF	CITATIONS
73	<i>miR-125b</i> can enhance skin tumor initiation and promote malignant progression by repressing differentiation and prolonging cell survival. Genes and Development, 2014, 28, 2532-2546.	5.9	52
74	Insights into the biological functions of Dock family guanine nucleotide exchange factors. Genes and Development, 2014, 28, 533-547.	5.9	129
75	Forces Generated by Cell Intercalation Tow Epidermal Sheets in Mammalian Tissue Morphogenesis. Developmental Cell, 2014, 28, 617-632.	7.0	81
76	Transit-Amplifying Cells Orchestrate Stem Cell Activity and Tissue Regeneration. Cell, 2014, 157, 935-949.	28.9	306
77	Direct in Vivo RNAi Screen Unveils Myosin IIa as a Tumor Suppressor of Squamous Cell Carcinomas. Science, 2014, 343, 309-313.	12.6	234
78	InÂvivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nature Cell Biology, 2014, 16, 179-190.	10.3	180
79	Sweat Gland Progenitors in Development, Homeostasis, and Wound Repair. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015222-a015222.	6.2	124
80	Par3–mInsc and Gαi3 cooperate to promote oriented epidermal cell divisions through LGN. Nature Cell Biology, 2014, 16, 758-769.	10.3	123
81	Emerging interactions between skin stem cells and their niches. Nature Medicine, 2014, 20, 847-856.	30.7	474
82	BMP Signaling and Its pSMAD1/5 Target Genes Differentially Regulate Hair Follicle Stem Cell Lineages. Cell Stem Cell, 2014, 15, 619-633.	11.1	145
83	Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling. Genes and Development, 2014, 28, 1517-1532.	5.9	215
84	Plasticity of epithelial stem cells in tissue regeneration. Science, 2014, 344, 1242281.	12.6	464
85	Architectural Niche Organization by LHX2 is Linked to Hair Follicle Stem Cell Function. Microscopy and Microanalysis, 2014, 20, 1382-1383.	0.4	1
86	Stem Cell Paradigms in Tissue Regeneration and Cancer. Blood, 2014, 124, SCI-41-SCI-41.	1.4	0
87	Oriented divisions, fate decisions. Current Opinion in Cell Biology, 2013, 25, 749-758.	5.4	97
88	<i>Sept4/</i> ARTS Regulates Stem Cell Apoptosis and Skin Regeneration. Science, 2013, 341, 286-289.	12.6	81
89	RNAi-Mediated Gene Function Analysis in Skin. Methods in Molecular Biology, 2013, 961, 351-361.	0.9	27
90	Architectural Niche Organization by LHX2 Is Linked to Hair Follicle Stem Cell Function. Cell Stem Cell, 2013, 13, 314-327.	11.1	84

#	Article	IF	CITATIONS
91	RNAi screens in mice identify physiological regulators of oncogenic growth. Nature, 2013, 501, 185-190.	27.8	146
92	<i>Nfatc1</i> orchestrates aging in hair follicle stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4950-9.	7.1	146
93	A matter of life and death: selfâ€renewal in stem cells. EMBO Reports, 2013, 14, 39-48.	4.5	153
94	NFIB is a governor of epithelial–melanocyte stem cell behaviour in a shared niche. Nature, 2013, 495, 98-102.	27.8	144
95	Spindle orientation and epidermal morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130016.	4.0	62
96	Function of Wnt/β-catenin in counteracting Tcf3 repression through the Tcf3–β-catenin interaction. Development (Cambridge), 2012, 139, 2118-2129.	2.5	97
97	Governing epidermal homeostasis by coupling cell–cell adhesion to integrin and growth factor signaling, proliferation, and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4886-4891.	7.1	55
98	A miR Image of Stem Cells and Their Lineages. Current Topics in Developmental Biology, 2012, 99, 175-199.	2.2	16
99	The Harmonies Played by TGF- \hat{I}^2 in Stem Cell Biology. Cell Stem Cell, 2012, 11, 751-764.	11.1	165
100	Paracrine TGF-β Signaling Counterbalances BMP-Mediated Repression in Hair Follicle Stem Cell Activation. Cell Stem Cell, 2012, 10, 63-75.	11.1	316
101	The Impact of Cell Culture on Stem Cell Research. Cell Stem Cell, 2012, 10, 640-641.	11.1	12
102	Cédric Blanpain: ISSCR's Outstanding Young Investigator for 2012. Cell Stem Cell, 2012, 10, 751-752.	11.1	4
103	Identification of Stem Cell Populations in Sweat Glands and Ducts Reveals Roles in Homeostasis and Wound Repair. Cell, 2012, 150, 136-150.	28.9	265
104	A family business: stem cell progeny join the niche to regulate homeostasis. Nature Reviews Molecular Cell Biology, 2012, 13, 103-114.	37.0	266
105	DNA Methylation Dynamics during InÂVivo Differentiation of Blood and Skin Stem Cells. Molecular Cell, 2012, 47, 633-647.	9.7	338
106	An RNA interference screen uncovers a new molecule in stem cell self-renewal and long-term regeneration. Nature, 2012, 485, 104-108.	27.8	94
107	What does the concept of the stem cell niche really mean today?. BMC Biology, 2012, 10, 19.	3.8	155
108	Mitotic internalization of planar cell polarity proteins preserves tissue polarity. Nature Cell Biology, 2011, 13, 893-902.	10.3	123

#	Article	IF	CITATIONS
109	MicroRNAs and their roles in mammalian stem cells. Journal of Cell Science, 2011, 124, 1775-1783.	2.0	93
110	Dynamics between Stem Cells, Niche, and Progeny in the Hair Follicle. Cell, 2011, 144, 92-105.	28.9	525
111	Skin Stem Cells Orchestrate Directional Migration by Regulating Microtubule-ACF7 Connections through GSK3Î ² . Cell, 2011, 144, 341-352.	28.9	179
112	A Role for the Primary Cilium in Notch Signaling and Epidermal Differentiation during Skin Development. Cell, 2011, 145, 1129-1141.	28.9	268
113	Specific MicroRNAs Are Preferentially Expressed by Skin Stem Cells To Balance Self-Renewal and Early Lineage Commitment. Cell Stem Cell, 2011, 8, 294-308.	11.1	184
114	Reflections of an ISSCR President, 2010–2011. Cell Stem Cell, 2011, 8, 629-630.	11.1	0
115	Genome-wide Maps of Histone Modifications Unwind InÂVivo Chromatin States of the Hair Follicle Lineage. Cell Stem Cell, 2011, 9, 219-232.	11.1	187
116	Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nature Cell Biology, 2011, 13, 203-214.	10.3	153
117	Ferreting out stem cells from their niches. Nature Cell Biology, 2011, 13, 513-518.	10.3	80
118	A decade of molecular cell biology: achievements and challenges. Nature Reviews Molecular Cell Biology, 2011, 12, 669-674.	37.0	20
119	Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature, 2011, 470, 353-358.	27.8	366
120	Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2270-2275.	7.1	347
121	Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10544-10549.	7.1	246
122	EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes and Development, 2011, 25, 485-498.	5.9	332
123	An eye to treating blindness. Nature, 2010, 466, 567-568.	27.8	18
124	Rapid functional dissection of genetic networks via tissue-specific transduction and RNAi in mouse embryos. Nature Medicine, 2010, 16, 821-827.	30.7	190
125	Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development (Cambridge), 2010, 137, 3753-3761.	2.5	155
126	Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. Journal of Clinical Investigation, 2009, 119, 1784-1793.	8.2	174

#	Article	IF	CITATIONS
127	Epithelial Hair Follicle Stem Cells. , 2009, , 189-197.		1
128	DGCR8-dependent microRNA biogenesis is essential for skin development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 498-502.	7.1	217
129	Building confidence: the transition from student to professor. Nature Cell Biology, 2009, 11, 786-786.	10.3	0
130	Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nature Genetics, 2009, 41, 1068-1075.	21.4	184
131	Epidermal homeostasis: a balancing act of stem cells in the skin. Nature Reviews Molecular Cell Biology, 2009, 10, 207-217.	37.0	1,076
132	Ezh2 Orchestrates Gene Expression for the Stepwise Differentiation of Tissue-Specific Stem Cells. Cell, 2009, 136, 1122-1135.	28.9	556
133	Cyfip1 Is a Putative Invasion Suppressor in Epithelial Cancers. Cell, 2009, 137, 1047-1061.	28.9	77
134	The Tortoise and the Hair: Slow-Cycling Cells in the Stem Cell Race. Cell, 2009, 137, 811-819.	28.9	351
135	A Two-Step Mechanism for Stem Cell Activation during Hair Regeneration. Cell Stem Cell, 2009, 4, 155-169.	11.1	669
136	Finding One's Niche in the Skin. Cell Stem Cell, 2009, 4, 499-502.	11.1	147
137	Isolation and Culture of Epithelial Stem Cells. Methods in Molecular Biology, 2009, 482, 215-232.	0.9	169
138	A skin microRNA promotes differentiation by repressing â€~stemness'. Nature, 2008, 452, 225-229.	27.8	735
139	Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles. Nature Cell Biology, 2008, 10, 1257-1268.	10.3	291
140	Hair Follicle Stem Cells Are Specified and Function in Early Skin Morphogenesis. Cell Stem Cell, 2008, 3, 33-43.	11.1	510
141	NFATc1 Balances Quiescence and Proliferation of Skin Stem Cells. Cell, 2008, 132, 299-310.	28.9	383
142	ACF7 Regulates Cytoskeletal-Focal Adhesion Dynamics and Migration and Has ATPase Activity. Cell, 2008, 135, 137-148.	28.9	253
143	Skin stem cells: rising to the surface. Journal of Cell Biology, 2008, 180, 273-284.	5.2	385
144	More than one way to skin Genes and Development, 2008, 22, 976-985.	5.9	192

#	Article	IF	CITATIONS
145	AP-2 factors act in concert with Notch to orchestrate terminal differentiation in skin epidermis. Journal of Cell Biology, 2008, 183, 37-48.	5.2	90
146	New insights into cadherin function in epidermal sheet formation and maintenance of tissue integrity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15405-15410.	7.1	114
147	BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes and Development, 2008, 22, 543-557.	5.9	365
148	Skin stem cells: rising to the surface. Journal of Experimental Medicine, 2008, 205, i5-i5.	8.5	0
149	Stem Cells: Biology, Ethics and potential for Medicine. L'annuaire Du Collège De France, 2008, , 897-902.	0.0	0
150	Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. Journal of Cell Biology, 2007, 176, 147-154.	5.2	173
151	Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10063-10068.	7.1	276
152	Epithelial Stem Cells: Turning over New Leaves. Cell, 2007, 128, 445-458.	28.9	511
153	Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. Journal of Cell Biology, 2007, 176, 667-680.	5.2	209
154	p63: revving up epithelial stem-cell potential. Nature Cell Biology, 2007, 9, 731-733.	10.3	91
155	Scratching the surface of skin development. Nature, 2007, 445, 834-842.	27.8	779
156	Loss of TGFβ Signaling Destabilizes Homeostasis and Promotes Squamous Cell Carcinomas in Stratified Epithelia. Cancer Cell, 2007, 12, 313-327.	16.8	244
157	Stem cells and morphogenesis. FASEB Journal, 2007, 21, A44.	0.5	0
158	Epidermal Stem Cells of the Skin. Annual Review of Cell and Developmental Biology, 2006, 22, 339-373.	9.4	681
159	Lhx2 Maintains Stem Cell Character in Hair Follicles. Science, 2006, 312, 1946-1949.	12.6	308
160	p120-Catenin Mediates Inflammatory Responses in the Skin. Cell, 2006, 124, 631-644.	28.9	254
161	Blimp1 Defines a Progenitor Population that Governs Cellular Input to the Sebaceous Gland. Cell, 2006, 126, 597-609.	28.9	396
162	Tcf3 Governs Stem Cell Features and Represses Cell Fate Determination in Skin. Cell, 2006, 127, 171-183.	28.9	262

#	Article	IF	CITATIONS
163	Catenins: Keeping Cells from Getting Their Signals Crossed. Developmental Cell, 2006, 11, 601-612.	7.0	257
164	Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nature Genetics, 2006, 38, 356-362.	21.4	518
165	Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes and Development, 2006, 20, 3022-3035.	5.9	368
166	Links between α-catenin, NF-κB, and squamous cell carcinoma in skin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2322-2327.	7.1	117
167	Mice in the world of stem cell biology. Nature Genetics, 2005, 37, 1201-1206.	21.4	36
168	Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature, 2005, 437, 275-280.	27.8	889
169	Sgk3 links growth factor signaling to maintenance of progenitor cells in the hair follicle. Journal of Cell Biology, 2005, 170, 559-570.	5.2	48
170	Molecular Dissection of Mesenchymal–Epithelial Interactions in the Hair Follicle. PLoS Biology, 2005, 3, e331.	5.6	405
171	Defining the impact of Â-catenin/Tcf transactivation on epithelial stem cells. Genes and Development, 2005, 19, 1596-1611.	5.9	348
172	Conditional targeting of E-cadherin in skin: Insights into hyperproliferative and degenerative responses. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 552-557.	7.1	171
173	A Signaling Pathway Involving TGF-β2 and Snail in Hair Follicle Morphogenesis. PLoS Biology, 2004, 3, e11.	5.6	148
174	Defining the Epithelial Stem Cell Niche in Skin. Science, 2004, 303, 359-363.	12.6	1,877
175	Self-Renewal, Multipotency, and the Existence of Two Cell Populations within an Epithelial Stem Cell Niche. Cell, 2004, 118, 635-648.	28.9	1,300
176	Socializing with the Neighbors. Cell, 2004, 116, 769-778.	28.9	1,626
177	Stem cells in the skin: waste not, Wnt not. Genes and Development, 2003, 17, 1189-1200.	5.9	297
178	Sticky Business. Cell, 2003, 112, 535-548.	28.9	678
179	ACF7. Cell, 2003, 115, 343-354.	28.9	281
180	A Role for αβ1 Integrins in Focal Adhesion Function and Polarized Cytoskeletal Dynamics. Developmental Cell, 2003, 5, 415-427.	7.0	68

#	Article	IF	CITATIONS
181	Links between signal transduction, transcription and adhesion in epithelial bud development. Nature, 2003, 422, 317-322.	27.8	537
182	Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. Journal of Cell Biology, 2003, 163, 609-623.	5.2	234
183	GATA-3: an unexpected regulator of cell lineage determination in skin. Genes and Development, 2003, 17, 2108-2122.	5.9	297
184	A Role for Skin γδT Cells in Wound Repair. Science, 2002, 296, 747-749.	12.6	583
185	Actin Cable Dynamics and Rho/Rock Orchestrate a Polarized Cytoskeletal Architecture in the Early Steps of Assembling a Stratified Epithelium. Developmental Cell, 2002, 3, 367-381.	7.0	321
186	Getting under the skin of epidermal morphogenesis. Nature Reviews Genetics, 2002, 3, 199-209.	16.3	686
187	At the Roots of a Never-Ending Cycle. Developmental Cell, 2001, 1, 13-25.	7.0	253
188	Hyperproliferation and Defects in Epithelial Polarity upon Conditional Ablation of α-Catenin in Skin. Cell, 2001, 104, 605-617.	28.9	414
189	Desmoplakin is essential in epidermal sheet formation. Nature Cell Biology, 2001, 3, 1076-1085.	10.3	276
190	Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes and Development, 2001, 15, 1688-1705.	5.9	504
191	Conditional Ablation of \hat{I}^21 Integrin in Skin. Journal of Cell Biology, 2000, 150, 1149-1160.	5.2	363
192	Directed Actin Polymerization Is the Driving Force for Epithelial Cell–Cell Adhesion. Cell, 2000, 100, 209-219.	28.9	1,064
193	Klf4 is a transcription factor required for establishing the barrier function of the skin. Nature Genetics, 1999, 22, 356-360.	21.4	722
194	A common human skin tumour is caused by activating mutations in β-catenin. Nature Genetics, 1999, 21, 410-413.	21.4	849
195	Myelin formation by Schwann cells in the absence of ?4 integrin. , 1999, 27, 269-274.		21
196	De Novo Hair Follicle Morphogenesis and Hair Tumors in Mice Expressing a Truncated β-Catenin in Skin. Cell, 1998, 95, 605-614.	28.9	1,301
197	Progressive Kidney Degeneration in Mice Lacking Tensin. Journal of Cell Biology, 1997, 136, 1349-1361.	5.2	117
198	THE CYTOSKELETON AND DISEASE: Genetic Disorders of Intermediate Filaments. Annual Review of Genetics, 1996, 30, 197-231.	7.6	169

#	Article	IF	CITATIONS
199	Inhibition of skin development by targeted expression of a dominant-negative retinoic acid receptor. Nature, 1995, 374, 159-162.	27.8	173
200	Keratins and the Skin. Annual Review of Cell and Developmental Biology, 1995, 11, 123-154.	9.4	378
201	Epidermal differentiation and keratin gene expression. Journal of Cell Science, 1993, 1993, 197-208.	2.0	124
202	The genetic basis of epidermolytic hyperkeratosis: A disorder of differentiation-specific epidermal keratin genes. Cell, 1992, 70, 811-819.	28.9	335
203	Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell, 1991, 64, 365-380.	28.9	425
204	Keratin genes, epidermal differentiation and animal models for the study of human skin diseases. Biochemical Society Transactions, 1991, 19, 1112-1115.	3.4	18
205	The Nature and Significance of Differential Keratin Gene Expression. Annals of the New York Academy of Sciences, 1985, 455, 436-450.	3.8	23
206	Remarkable conservation of structure among intermediate filament genes. Cell, 1984, 39, 491-498.	28.9	180
207	The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins. Cell, 1983, 33, 915-924.	28.9	341
208	The cDNA sequence of a human epidermal keratin: Divergence of sequence but conservation of structure among intermediate filament proteins. Cell, 1982, 31, 243-252.	28.9	318
209	Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell, 1980, 19, 1033-1042.	28.9	1,041
210	The expression of keratin genes in epidermis and cultured epidermal cells. Cell, 1978, 15, 887-897.	28.9	284
211	The integrated stress response remodels the microtubule-organizing center to clear unfolded proteins following proteotoxic stress. ELife, 0, 11, .	6.0	4