Evžen Amler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2863323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of miRNA-145, 148, and 185 and Stem Cells in Prostate Cancer. International Journal of Molecular Sciences, 2022, 23, 1626.	4.1	16
2	Low Concentrated Fractionalized Nanofibers as Suitable Fillers for Optimization of Structural–Functional Parameters of Dead Space Gel Implants after Rectal Extirpation. Gels, 2022, 8, 158.	4.5	1
3	Liquid resorbable nanofibrous surgical mesh: a proof of a concept. Hernia: the Journal of Hernias and Abdominal Wall Surgery, 2022, 26, 557-565.	2.0	1
4	Cellular Response to Individual Components of the Platelet Concentrate. International Journal of Molecular Sciences, 2021, 22, 4539.	4.1	3
5	Natural Compounds and PCL Nanofibers: A Novel Tool to Counteract Stem Cell Senescence. Cells, 2021, 10, 1415.	4.1	7
6	Glyphosate Interaction with eEF1α1 Indicates Altered Protein Synthesis: Evidence for Reduced Spermatogenesis and Cytostatic Effect. ACS Omega, 2021, 6, 14848-14857.	3.5	3
7	O38 PROPHYLACTIC LIQUID MESH - A SMALL ANIMAL EXPERIMENT. British Journal of Surgery, 2021, 108, .	0.3	0
8	Smart Nanofibers with Natural Extracts Prevent Senescence Patterning in a Dynamic Cell Culture Model of Human Skin. Cells, 2020, 9, 2530.	4.1	10
9	A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment. Nanomaterials, 2020, 10, 1801.	4.1	9
10	FUNCTIONALIZATION OF POLYMERIC NANOFIBERS USING PLATELETS FOR MELANOCYTE CULTURE. Lekar A Technika, 2020, 50, 16-22.	0.1	0
11	Distinctive germline expression of class I human leukocyte antigen (HLA) alleles and DRB1 heterozygosis predict the outcome of patients with non-small cell lung cancer receiving PD-1/PD-L1 immune checkpoint blockade. , 2020, 8, e000733.		32
12	The Effect of Alternative Solvents on the Biocompatibility of Centrifugally Spun Poly-ε-Caprolactone. Key Engineering Materials, 2020, 834, 155-161.	0.4	0
13	Coaxial Nanofibrous Scaffold Prepared Using Centrifugal Spinning as a Drug Delivery System for Skeletal Tissue Engineering. Key Engineering Materials, 2020, 834, 162-168.	0.4	2
14	Poly-ε-caprolactone and polyvinyl alcohol electrospun wound dressings: adhesion properties and wound management of skin defects in rabbits. Regenerative Medicine, 2019, 14, 423-445.	1.7	11
15	miR-125b Upregulates miR-34a and Sequentially Activates Stress Adaption and Cell Death Mechanisms in Multiple Myeloma. Molecular Therapy - Nucleic Acids, 2019, 16, 391-406.	5.1	30
16	Dynamic creep properties of a novel nanofiber hernia mesh in abdominal wall repair. Hernia: the Journal of Hernias and Abdominal Wall Surgery, 2019, 23, 1009-1015.	2.0	9
17	Needleless electrospun and centrifugal spun poly-ε-caprolactone scaffolds as a carrier for platelets in tissue engineering applications: A comparative study with hMSCs. Materials Science and Engineering C, 2019, 97, 567-575.	7.3	23
18	Ipilimumab for the treatment of metastatic prostate cancer. Expert Opinion on Biological Therapy, 2018, 18, 205-213.	3.1	14

Evžen Amler

#	Article	IF	CITATIONS
19	Platelet lysate as a serum replacement for skin cell culture on biomimetic PCL nanofibers. Platelets, 2018, 29, 395-405.	2.3	15
20	Composite 3D printed scaffold with structured electrospun nanofibers promotes chondrocyte adhesion and infiltration. Cell Adhesion and Migration, 2018, 12, 271-285.	2.7	36
21	Needleless emulsion electrospinning for the regulated delivery of susceptible proteins. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 583-597.	2.7	17
22	A polypropylene mesh modified with poly-ε-caprolactone nanofibers in hernia repair: large animal experiment. International Journal of Nanomedicine, 2018, Volume 13, 3129-3143.	6.7	22
23	Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering. Clinical Science, 2017, 131, 699-713.	4.3	73
24	Emulsion centrifugal spinning for production of 3D drug releasing nanofibres with core/shell structure. RSC Advances, 2017, 7, 1215-1228.	3.6	35
25	Osteogenic differentiation of 3D cultured mesenchymal stem cells induced by bioactive peptides. Cell Proliferation, 2017, 50, .	5.3	16
26	A comparison of high throughput core–shell 2D electrospinning and 3D centrifugal spinning techniques to produce platelet lyophilisate-loaded fibrous scaffolds and their effects on skin cells. RSC Advances, 2017, 7, 53706-53719.	3.6	22
27	Needleless coaxial electrospinning: A novel approach to mass production of coaxial nanofibers. International Journal of Pharmaceutics, 2017, 516, 293-300.	5.2	57
28	Evidence of novel miR-34a-based therapeutic approaches for multiple myeloma treatment. Scientific Reports, 2017, 7, 17949.	3.3	36
29	Platelet-functionalized three-dimensional poly-ε-caprolactone fibrous scaffold prepared using centrifugal spinning for delivery of growth factors. International Journal of Nanomedicine, 2017, Volume 12, 347-361.	6.7	26
30	Self-assembling nanoparticles encapsulating zoledronic acid inhibit mesenchymal stromal cells differentiation, migration and secretion of proangiogenic factors and their interactions with prostate cancer cells. Oncotarget, 2017, 8, 42926-42938.	1.8	21
31	Testicular cancer from diagnosis to epigenetic factors. Oncotarget, 2017, 8, 104654-104663.	1.8	54
32	Computer modelling reveals new conformers of the ATP binding loop of Na ⁺ /K ⁺ -ATPase involved in the transphosphorylation process of the sodium pump. PeerJ, 2017, 5, e3087.	2.0	3
33	Nanofibrous polycaprolactone scaffolds with adhered platelets stimulate proliferation of skin cells. Cell Proliferation, 2016, 49, 568-578.	5.3	24
34	Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles. International Journal of Nanomedicine, 2015, 10, 7307.	6.7	43
35	Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution. International Journal of Nanomedicine, 2015, 10, 2635.	6.7	32
36	Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-Ô•caprolactone nanofibers and growth factors for prevention of incisional hernia formation. International Journal of Nanomedicine, 2014, 9, 3263.	6.7	53

Evžen Amler

#	Article	IF	CITATIONS
37	Cell penetration to nanofibrous scaffolds. Cell Adhesion and Migration, 2014, 8, 36-41.	2.7	32
38	Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Nanomedicine, 2014, 9, 1083-1094.	3.3	77
39	Time-regulated drug delivery system based on coaxially incorporated platelet α-granules for biomedical use. Nanomedicine, 2013, 8, 1137-1154.	3.3	25
40	Elastic threeâ€dimensional poly (εâ€caprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells. Cell Proliferation, 2013, 46, 23-37.	5.3	73
41	Cryogenic grinding of electrospun poly-ε-caprolactone mesh submerged in liquid media. Materials Science and Engineering C, 2012, 32, 1366-1374.	7.3	13
42	Core/Shell Nanofibers with Embedded Liposomes as a Drug Delivery System. Biomacromolecules, 2012, 13, 952-962.	5.4	212