Mauro Degli Esposti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2862924/publications.pdf

Version: 2024-02-01

69 papers 4,568 citations

32 h-index 110387 64 g-index

72 all docs 72 docs citations

72 times ranked

5463 citing authors

#	Article	IF	CITATIONS
1	New Insights on Rotenone Resistance of Complex I Induced by the m.11778G>A/MT-ND4 Mutation Associated with Leber's Hereditary Optic Neuropathy. Molecules, 2022, 27, 1341.	3.8	3
2	New Alphaproteobacteria Thrive in the Depths of the Ocean with Oxygen Gradient. Microorganisms, 2022, 10, 455.	3.6	9
3	Respiratory Heme A-Containing Oxidases Originated in the Ancestors of Iron-Oxidizing Bacteria. Frontiers in Microbiology, 2021, 12, 664216.	3.5	9
4	On the evolution of cytochrome oxidases consuming oxygen. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148304.	1.0	9
5	Current phylogeny of Rhodospirillaceae: A multi-approach study. Molecular Phylogenetics and Evolution, 2019, 139, 106546.	2.7	10
6	Oxygen Reductases in Alphaproteobacterial Genomes: Physiological Evolution From Low to High Oxygen Environments. Frontiers in Microbiology, 2019, 10, 499.	3. 5	30
7	Mitochondria: Where Are They Coming From?. , 2018, , 11-17.		O
8	From Alphaproteobacteria to Proto-Mitochondria. , 2018, , 166-203.		2
9	Candidatus Dactylopiibacterium carminicum, a Nitrogen-Fixing Symbiont of Dactylopius Cochineal Insects (Hemiptera: Coccoidea: Dactylopiidae). Genome Biology and Evolution, 2017, 9, 2237-2250.	2.5	19
10	A Journey across Genomes Uncovers the Origin of Ubiquinone in Cyanobacteria. Genome Biology and Evolution, 2017, 9, 3039-3053.	2.5	24
11	The long story of mitochondrial DNA and respiratory complex I. Frontiers in Bioscience - Landmark, 2017, 22, 722-731.	3.0	5
12	The functional microbiome of arthropods. PLoS ONE, 2017, 12, e0176573.	2.5	101
13	Late Mitochondrial Acquisition, Really?. Genome Biology and Evolution, 2016, 8, 2031-2035.	2.5	12
14	A survey of the energy metabolism of nodulating symbionts reveals a new form of respiratory complex I. FEMS Microbiology Ecology, 2016, 92, fiw084.	2.7	12
15	Recent Developments on Bacterial Evolution into Eukaryotic Cells. , 2016, , 187-202.		O
16	Alpha proteobacterial ancestry of the [Fe-Fe]-hydrogenases in anaerobic eukaryotes. Biology Direct, 2016, 11, 34.	4.6	33
17	Genome Analysis of Structure–Function Relationships in Respiratory Complex I, an Ancient Bioenergetic Enzyme. Genome Biology and Evolution, 2016, 8, 126-147.	2.5	18
18	Altered Traffic of Cardiolipin during Apoptosis: Exposure on the Cell Surface as a Trigger for "Antiphospholipid Antibodies― Journal of Immunology Research, 2015, 2015, 1-9.	2.2	24

#	Article	IF	Citations
19	Molecular Evolution of Cytochrome bd Oxidases across Proteobacterial Genomes. Genome Biology and Evolution, 2015, 7, 801-820.	2.5	30
20	Evolution of Mitochondria Reconstructed from the Energy Metabolism of Living Bacteria. PLoS ONE, 2014, 9, e96566.	2.5	52
21	Bioenergetic Evolution in Proteobacteria and Mitochondria. Genome Biology and Evolution, 2014, 6, 3238-3251.	2.5	60
22	Acetic Acid Bacteria Genomes Reveal Functional Traits for Adaptation to Life in Insect Guts. Genome Biology and Evolution, 2014, 6, 912-920.	2.5	66
23	CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature, 2014, 510, 288-292.	27.8	174
24	Mitochondrial involvement in sensory neuronal cell death and survival. Experimental Brain Research, 2012, 221, 357-367.	1.5	7
25	Fas Death Receptor Enhances Endocytic Membrane Traffic Converging into the Golgi Region. Molecular Biology of the Cell, 2009, 20, 600-615.	2.1	24
26	Bid binding to negatively charged phospholipids may not be required for its pro-apoptotic activity in vivo. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 997-1010.	2.4	16
27	Chapter Twentyâ€One Organelle Intermixing and Membrane Scrambling in Cell Death. Methods in Enzymology, 2008, 442, 421-438.	1.0	11
28	Antiphospholipid reactivity against cardiolipin metabolites occurring during endothelial cell apoptosis. Arthritis Research and Therapy, 2006, 8, R180.	3.5	25
29	Pro-apoptotic effect of maize lipid transfer protein on mammalian mitochondria. Archives of Biochemistry and Biophysics, 2006, 445, 65-71.	3.0	28
30	Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Alters Mitochondrial Membrane Lipids. Cancer Research, 2005, 65, 8286-8297.	0.9	40
31	Death receptor signals to the mitochondria. Cancer Biology and Therapy, 2004, 3, 1051-1057.	3.4	168
32	Cardiolipin and its metabolites move from mitochondria to other cellular membranes during death receptor-mediated apoptosis. Cell Death and Differentiation, 2004, 11, 1133-1145.	11.2	131
33	Membrane lipids and cell death: an overview. Chemistry and Physics of Lipids, 2004, 129, 133-160.	3.2	75
34	Proapoptotic Bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death and Differentiation, 2003, 10, 1300-1309.	11,2	125
35	Mitochondrial membrane permeabilisation by Bax/Bak. Biochemical and Biophysical Research Communications, 2003, 304, 455-461.	2.1	172
36	Post-translational Modification of Bid Has Differential Effects on Its Susceptibility to Cleavage by Caspase 8 or Caspase 3. Journal of Biological Chemistry, 2003, 278, 15749-15757.	3.4	67

#	Article	IF	CITATIONS
37	The mitochondrial battlefield and membrane lipids during cell death signalling. Italian Journal of Biochemistry, 2003, 52, 43-50.	0.3	8
38	Sequence and functional similarities between pro-apoptotic Bid and plant lipid transfer proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1553, 331-340.	1.0	31
39	Measuring mitochondrial reactive oxygen species. Methods, 2002, 26, 335-340.	3.8	153
40	The roles of Bid. Apoptosis: an International Journal on Programmed Cell Death, 2002, 7, 433-440.	4.9	192
41	Chapter 4 Assessing functional integrity of mitochondria in vitro and in vivo. Methods in Cell Biology, 2001, 65, 75-96.	1.1	42
42	Cellular damage signals promote sequential changes at the N-terminus and BH-1 domain of the pro-apoptotic protein Bak. Oncogene, 2001, 20, 7668-7676.	5.9	84
43	Bid, a Widely Expressed Proapoptotic Protein of the Bcl-2 Family, Displays Lipid Transfer Activity. Molecular and Cellular Biology, 2001, 21, 7268-7276.	2.3	124
44	The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. Journal of Bioenergetics and Biomembranes, 2000, 32, 153-162.	2.3	238
45	The Pro-Apoptotic Proteins, Bid and Bax, Cause a Limited Permeabilization of the Mitochondrial Outer Membrane That Is Enhanced by Cytosol. Journal of Cell Biology, 1999, 147, 809-822.	5.2	312
46	Inhibition of Mitochondrial Oxidative Phosphorylation Induces Hyper-Expression of Glutamic Acid Decarboxylase in Pancreatic Islet Cells. Autoimmunity, 1999, 30, 43-51.	2.6	6
47	Bcl-2 and Mitochondrial Oxygen Radicals. Journal of Biological Chemistry, 1999, 274, 29831-29837.	3.4	160
48	6-Thienyl and 6-phenylimidazo[2,1-b]thiazoles as inhibitors of mitochondrial NADH dehydrogenase. European Journal of Medicinal Chemistry, 1999, 34, 883-889.	5.5	21
49	Ubiquinone and inhibitors sites in complex I: one, two or three?. Biochemical Society Transactions, 1999, 27, A83-A83.	3.4	0
50	Inhibitors of NADH–ubiquinone reductase: an overview. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1364, 222-235.	1.0	453
51	Mitochondria and cells produce reactive oxygen species in virtual anaerobiosis: relevance to ceramide-induced apoptosis. FEBS Letters, 1998, 430, 338-342.	2.8	139
52	Proton pumping of mitochondrial complex I: differential activation by analogs of ubiquinone. Journal of Bioenergetics and Biomembranes, 1997, 29, 71-80.	2.3	27
53	The Interaction of Q Analogs, Particularly Hydroxydecyl Benzoquinone (Idebenone), with the Respiratory Complexes of Heart Mitochondria. Archives of Biochemistry and Biophysics, 1996, 330, 395-400.	3.0	101
54	Thienylimidazo[2,1-b]thiazoles as Inhibitors of Mitochondrial NADH Dehydrogenase. Journal of Medicinal Chemistry, 1995, 38, 1090-1097.	6.4	14

#	Article	IF	CITATIONS
55	The mechanism of proton and electron transport in mitochondrial complex I. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 116-120.	1.0	73
56	Functional alterations of the mitochondrially encoded ND4 subunit associated with Leber's hereditary optic neuropathy. FEBS Letters, 1994, 352, 375-379.	2.8	119
57	Natural variation in the potency and binding sites of mitochondrial quinone-like inhibitors. Biochemical Society Transactions, 1994, 22, 209-213.	3.4	35
58	Mitochondrial cytochrome b: evolution and structure of the protein. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1143, 243-271.	1.0	328
59	Structure/function relationships in mitochondrial cytochrome b revealed by the kinetic and circular dichroic properties of two yeast inhibitor-resistant mutants. FEBS Journal, 1991, 199, 753-760.	0.2	45
60	A critical evaluation of the hydropathy profile of membrane proteins. FEBS Journal, 1990, 190, 207-219.	0.2	86
61	Circular dichroic spectroscopy of membrane haemoproteins. The molecular determinants of the dichroic properties of the b cytochromes in various ubiquinol:cytochrome c reductases. FEBS Journal, 1989, 182, 27-36.	0.2	30
62	Quenching of the intrinsic tryptophan fluorescence of mitochondrial ubiquinol-cytochrome-c reductase by the binding of ubiquinone. FEBS Journal, 1988, 171, 81-86.	0.2	49
63	On the oxidation pathways of the mitochondrial bc1 complex from beef heart. Effects of various inhibitors. FEBS Journal, 1986, 160, 547-555.	0.2	22
64	A clarification of the effects of DCCD on the electron transfer and antimycin binding of the mitochondrialbc 1 complex. Journal of Bioenergetics and Biomembranes, 1985, 17, 109-121.	2.3	4
65	Effect of ubiquinone extraction on the reaction of the mitochondrialbe 1 complex with ferricyanide. Journal of Bioenergetics and Biomembranes, 1985 , 17 , $283-294$.	2.3	5
66	Inhibition of the mitochondrial bc 1 complex by dibromothymoquinone. FEBS Letters, 1983, 156, 15-19.	2.8	7
67	Effect of antimycin on the rapid reduction of cytochromeclin thebclregion of the mitochondrial respiratory chain. FEBS Letters, 1982, 142, 49-53.	2.8	24
68	The inhibition of proton translocation in the mitochondrial bc 1 region by dicyclohexylcarbodiimide. FEBS Letters, 1982 , 147 , $101-105$.	2.8	37
69	Cellular damage signals promote sequential changes at the N-terminus and BH-1 domain of the pro-apoptotic protein Bak. , 0, .		1