Manuel López-Cabrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2862842/publications.pdf

Version: 2024-02-01

			126858		168321
	51	3,784	33		53
	papers	citations	h-index		g-index
ĺ				. '	
	53	53	53		3403
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells–Peritoneal Stroma Interactions. Frontiers in Immunology, 2021, 12, 607204.	2.2	47
2	Cellular Integrin $\hat{l}\pm5\hat{l}^21$ and Exosomal ADAM17 Mediate the Binding and Uptake of Exosomes Produced by Colorectal Carcinoma Cells. International Journal of Molecular Sciences, 2021, 22, 9938.	1.8	11
3	Mesothelial-to-Mesenchymal Transition and Exosomes in Peritoneal Metastasis of Ovarian Cancer. International Journal of Molecular Sciences, 2021, 22, 11496.	1.8	31
4	Increased miR-7641 Levels in Peritoneal Hyalinizing Vasculopathy in Long-Term Peritoneal Dialysis Patients. International Journal of Molecular Sciences, 2020, 21, 5824.	1.8	4
5	Alanyl-Glutamine Restores Tight Junction Organization after Disruption by a Conventional Peritoneal Dialysis Fluid. Biomolecules, 2020, 10, 1178.	1.8	19
6	Caveolin1 and YAP drive mechanically induced mesothelial to mesenchymal transition and fibrosis. Cell Death and Disease, 2020, 11, 647.	2.7	39
7	Mesothelial-to-Mesenchymal Transition Contributes to the Generation of Carcinoma-Associated Fibroblasts in Locally Advanced Primary Colorectal Carcinomas. Cancers, 2020, 12, 499.	1.7	22
8	IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules, 2020, 10, 1361.	1.8	12
9	Natural Plants Compounds as Modulators of Epithelial-to-Mesenchymal Transition. Frontiers in Pharmacology, 2019, 10, 715.	1.6	141
10	Mesothelialâ€toâ€mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. Journal of Pathology, 2017, 242, 140-151.	2.1	83
11	miR-21 Promotes Fibrogenesis in Peritoneal Dialysis. American Journal of Pathology, 2017, 187, 1537-1550.	1.9	30
12	Genomic reprograming analysis of the Mesothelial to Mesenchymal Transition identifies biomarkers in peritoneal dialysis patients. Scientific Reports, 2017, 7, 44941.	1.6	38
13	The dipeptide alanyl-glutamine ameliorates peritoneal fibrosis and attenuates IL-17 dependent pathways during peritoneal dialysis. Kidney International, 2016, 89, 625-635.	2.6	61
14	Immune-Regulatory Molecule CD69 Controls Peritoneal Fibrosis. Journal of the American Society of Nephrology: JASN, 2016, 27, 3561-3576.	3.0	31
15	Mesothelial-to-mesenchymal transition in the pathogenesis of post-surgical peritoneal adhesions. Journal of Pathology, 2016, 239, 48-59.	2.1	82
16	Biocompatible Dialysis Solutions Preserve Peritoneal Mesothelial Cell and Vessel Wall Integrity. A Case-Control Study on Human Biopsies. Peritoneal Dialysis International, 2016, 36, 129-134.	1.1	52
17	miRâ€9â€5p suppresses proâ€fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting <scp>NOX</scp> 4 and <scp>TGFBR</scp> 2. EMBO Reports, 2015, 16, 1358-1377.	2.0	87
18	T Helper 17/Regulatory T Cell Balance and Experimental Models of Peritoneal Dialysis-Induced Damage. BioMed Research International, 2015, 2015, 1-9.	0.9	15

#	Article	IF	Citations
19	Rapamycin Protects from Type-I Peritoneal Membrane Failure Inhibiting the Angiogenesis, Lymphangiogenesis, and Endo-MT. BioMed Research International, 2015, 2015, 1-15.	0.9	24
20	Caveolinâ€1 deficiency induces a <scp>MEK</scp> â€ <scp>ERK</scp> 1/2â€5nailâ€1â€dependent epithelial–mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Molecular Medicine, 2015, 7, 102-123.	3.3	79
21	A Pathogenetic Role for Endothelin-1 in Peritoneal Dialysis-Associated Fibrosis. Journal of the American Society of Nephrology: JASN, 2015, 26, 173-182.	3.0	31
22	The Mesothelial Origin of Carcinoma Associated-Fibroblasts in Peritoneal Metastasis. Cancers, 2015, 7, 1994-2011.	1.7	72
23	Mesenchymal Conversion of Mesothelial Cells Is a Key Event in the Pathophysiology of the Peritoneum during Peritoneal Dialysis. Advances in Medicine, 2014, 2014, 1-17.	0.3	74
24	IL-17A is a novel player in dialysis-induced peritoneal damage. Kidney International, 2014, 86, 303-315.	2.6	74
25	TWEAK Promotes Peritoneal Inflammation. PLoS ONE, 2014, 9, e90399.	1.1	21
26	Paricalcitol Reduces Peritoneal Fibrosis in Mice through the Activation of Regulatory T Cells and Reduction in IL-17 Production. PLoS ONE, 2014, 9, e108477.	1.1	55
27	Carcinomaâ€associated fibroblasts derive from mesothelial cells via mesothelialâ€toâ€mesenchymal transition in peritoneal metastasis. Journal of Pathology, 2013, 231, 517-531.	2.1	134
28	Are the Mesothelial-to-Mesenchymal Transition, Sclerotic Peritonitis Syndromes, and Encapsulating Peritoneal Sclerosis Part of the Same Process?. International Journal of Nephrology, 2013, 2013, 1-7.	0.7	21
29	Functional Relevance of the Switch of VEGF Receptors/Co-Receptors during Peritoneal Dialysis-Induced Mesothelial to Mesenchymal Transition. PLoS ONE, 2013, 8, e60776.	1.1	35
30	Inhibition of Transforming Growth Factor-Activated Kinase 1 (TAK1) Blocks and Reverses Epithelial to Mesenchymal Transition of Mesothelial Cells. PLoS ONE, 2012, 7, e31492.	1.1	46
31	Blocking TGF- \hat{l}^21 Protects the Peritoneal Membrane from Dialysate-Induced Damage. Journal of the American Society of Nephrology: JASN, 2011, 22, 1682-1695.	3.0	146
32	PPAR- \hat{l}^3 agonist rosiglitazone protects peritoneal membrane from dialysis fluid-induced damage. Laboratory Investigation, 2010, 90, 1517-1532.	1.7	62
33	p38 maintains E-cadherin expression by modulating TAK1–NF-κB during epithelial-to-mesenchymal transition. Journal of Cell Science, 2010, 123, 4321-4331.	1.2	84
34	BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure. Nephrology Dialysis Transplantation, 2010, 25, 1098-1108.	0.4	90
35	Chronic Exposure of Mouse Peritoneum to Peritoneal Dialysis Fluid: Structural and Functional Alterations of the Peritoneal Membrane. Peritoneal Dialysis International, 2009, 29, 227-230.	1.1	25
36	Cyclooxygenase-2 Mediates Dialysate-Induced Alterations of the Peritoneal Membrane. Journal of the American Society of Nephrology: JASN, 2009, 20, 582-592.	3.0	65

#	Article	IF	Citations
37	Chronic exposure of mouse peritoneum to peritoneal dialysis fluid: structural and functional alterations of the peritoneal membrane. Peritoneal Dialysis International, 2009, 29, 227-30.	1.1	28
38	Tissue distribution of hyalinazing vasculopathy lesions in peritoneal dialysis patients. Pathology Research and Practice, 2008, 204, 563-567.	1.0	11
39	Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-κB/Snail1 pathway. DMM Disease Models and Mechanisms, 2008, 1, 264-274.	1.2	104
40	Characterization of Epithelial-to-Mesenchymal Transition of Mesothelial Cells in a Mouse Model of Chronic Peritoneal Exposure to High Glucose Dialysate. Peritoneal Dialysis International, 2008, 28, 29-33.	1.1	21
41	Characterization of epithelial-to-mesenchymal transition of mesothelial cells in a mouse model of chronic peritoneal exposure to high glucose dialysate. Peritoneal Dialysis International, 2008, 28 Suppl 5, S29-33.	1.1	10
42	Epithelial to Mesenchymal Transition and Peritoneal Membrane Failure in Peritoneal Dialysis Patients: Pathologic Significance and Potential Therapeutic Interventions. Journal of the American Society of Nephrology: JASN, 2007, 18, 2004-2013.	3.0	317
43	The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells. International Journal of Cancer, 2007, 121, 2140-2152.	2.3	95
44	Epithelial-to-mesenchymal transition of the mesothelial cell—its role in the response of the peritoneum to dialysis. Nephrology Dialysis Transplantation, 2006, 21, ii2-ii7.	0.4	89
45	Mast Cell Quantification in Normal Peritoneum and During Peritoneal Dialysis Treatment. Archives of Pathology and Laboratory Medicine, 2006, 130, 1188-1192.	1.2	14
46	Ex vivo analysis of dialysis effluent-derived mesothelial cells as an approach to unveiling the mechanism of peritoneal membrane failure. Peritoneal Dialysis International, 2006, 26, 26-34.	1.1	37
47	Mesenchymal Conversion of Mesothelial Cells as a Mechanism Responsible for High Solute Transport Rate in Peritoneal Dialysis: Role of Vascular Endothelial Growth Factor. American Journal of Kidney Diseases, 2005, 46, 938-948.	2.1	188
48	Epithelial to mesenchymal transition as a triggering factor of peritoneal membrane fibrosis and angiogenesis in peritoneal dialysis patients. Current Opinion in Investigational Drugs, 2005, 6, 262-8.	2.3	44
49	Peritoneal Dialysis and Epithelial-to-Mesenchymal Transition of Mesothelial Cells. New England Journal of Medicine, 2003, 348, 403-413.	13.9	694
50	Hepatitis B virus X protein transactivates inducible nitric oxide synthase gene promoter through the proximal nuclear factor [kappa]B[ndash]binding site: Evidence that cytoplasmic location of X protein is essential for gene transactivation. Hepatology, 2001, 34, 1218-1224.	3.6	41
51	The hepatitis B virus HBx protein induces adherens junction disruption in a src-dependent manner. Oncogene, 2001, 20, 3323-3331.	2.6	82