Filomena Ferrucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2862334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploratory spatio-temporal data mining and visualization. Journal of Visual Languages and Computing, 2007, 18, 255-279.	1.8	114
2	Recommending and Localizing Change Requests for Mobile Apps Based on User Reviews. , 2017, , .		105
3	Class point: an approach for the size estimation of object-oriented systems. IEEE Transactions on Software Engineering, 2005, 31, 52-74.	5.6	86
4	Not all bugs are the same: Understanding, characterizing, and classifying bug types. Journal of Systems and Software, 2019, 152, 165-181.	4.5	67
5	Using tabu search to configure support vector regression for effort estimation. Empirical Software Engineering, 2013, 18, 506-546.	3.9	63
6	A Parallel Genetic Algorithm Based on Hadoop MapReduce for the Automatic Generation of JUnit Test Suites. , 2012, , .		53
7	Genetic Programming for Effort Estimation: An Analysis of the Impact of Different Fitness Functions. , 2010, , .		50
8	Enhancing change prediction models using developer-related factors. Journal of Systems and Software, 2018, 143, 14-28.	4.5	49
9	A Genetic Algorithm to Configure Support Vector Machines for Predicting Fault-Prone Components. Lecture Notes in Computer Science, 2011, , 247-261.	1.3	42
10	Symbol–Relation Grammars: A Formalism for Graphical Languages. Information and Computation, 1996, 131, 1-46.	0.7	41
11	Speed up genetic algorithms in the cloud using software containers. Future Generation Computer Systems, 2019, 92, 276-289.	7.5	40
12	Effort estimation modeling techniques. , 2006, , .		35
13	Towards a framework for mining and analysing spatioâ€ŧemporal datasets. International Journal of Geographical Information Science, 2007, 21, 895-906.	4.8	35
14	Investigating the use of Support Vector Regression for web effort estimation. Empirical Software Engineering, 2011, 16, 211-243.	3.9	34
15	Adaptive Multi-Objective Evolutionary Algorithms for Overtime Planning in Software Projects. IEEE Transactions on Software Engineering, 2017, 43, 898-917.	5.6	34
16	Improving change prediction models with code smell-related information. Empirical Software Engineering, 2020, 25, 49-95.	3.9	34
17	Cross-company vs. single-company web effort models using the Tukutuku database: An extended study. Journal of Systems and Software, 2008, 81, 673-690.	4.5	33
18	Web Effort Estimation: Function Point Analysis vs. COSMIC. Information and Software Technology, 2016, 72, 90-109.	4.4	32

#	Article	IF	CITATIONS
19	Cross-Project Just-in-Time Bug Prediction for Mobile Apps: An Empirical Assessment. , 2019, , .		32
20	Not going to take this anymore: Multi-objective overtime planning for Software Engineering projects. , 2013, , .		31
21	Using Hadoop MapReduce for Parallel Genetic Algorithms: A Comparison of the Global, Grid and Island Models. Evolutionary Computation, 2018, 26, 535-567.	3.0	30
22	Do developers update third-party libraries in mobile apps?. , 2018, , .		30
23	Gender Diversity and Community Smells: Insights From the Trenches. IEEE Software, 2020, 37, 10-16.	1.8	27
24	Search-Based Software Project Management. , 2014, , 373-399.		26
25	An extensive evaluation of ensemble techniques for software change prediction. Journal of Software: Evolution and Process, 2019, 31, e2156.	1.6	24
26	A SCORM Thin Client Architecture for E-Learning Systems Based on Web Services. International Journal of Distance Education Technologies, 2007, 5, 19-36.	2.9	22
27	Comparing Size Measures for Predicting Web Application Development Effort: A Case Study. , 2007, , .		21
28	Towards Migrating Genetic Algorithms for Test Data Generation to the Cloud. Advances in Computer and Electrical Engineering Book Series, 0, , 113-135.	0.3	21
29	The Secret Life of Software Vulnerabilities: A Large-Scale Empirical Study. IEEE Transactions on Software Engineering, 2023, 49, 44-63.	5.6	20
30	Single and Multi Objective Genetic Programming for software development effort estimation. , 2012, , .		19
31	Cross- vs. within-company cost estimation studies revisited. , 2014, , .		19
32	Effort estimation. , 2007, , .		18
33	How to Make Best Use of Cross-Company Data for Web Effort Estimation?. , 2015, , .		18
34	Integrating Google Earth within OLAP Tools for Multidimensional Exploration and Analysis of Spatial Data. Lecture Notes in Business Information Processing, 2009, , 940-951.	1.0	18
35	Web effort estimation. , 2012, , .		17
36	COSMIC functional measurement of mobile applications and code size estimation. , 2015, , .		17

#	Article	IF	CITATIONS
37	How the Experience of Development Teams Relates to Assertion Density of Test Classes. , 2019, , .		17
38	Testing of Mobile Applications in the Wild. , 2020, , .		17
39	Third-party libraries in mobile apps. Empirical Software Engineering, 2020, 25, 2341-2377.	3.9	16
40	Develop, Deploy and Execute Parallel Genetic Algorithms in the Cloud. , 2016, , .		15
41	Developer-Related Factors in Change Prediction: An Empirical Assessment. , 2017, , .		15
42	Using Tabu Search to Estimate Software Development Effort. Lecture Notes in Computer Science, 2009, , 307-320.	1.3	15
43	A container-based infrastructure for fuzzy-driven root causing of flaky tests. , 2020, , .		15
44	Constructing meta-CASE workbenches by exploiting visual language generators. IEEE Transactions on Software Engineering, 2006, 32, 156-175.	5.6	14
45	Investigating Functional and Code Size Measures for Mobile Applications. , 2015, , .		14
46	A parallel genetic algorithms framework based on Hadoop MapReduce. , 2015, , .		13
47	A study on the statistical convertibility of IFPUG Function Point, COSMIC Function Point and Simple Function Point. Information and Software Technology, 2017, 86, 1-19.	4.4	13
48	Ensemble techniques for software change prediction: A preliminary investigation. , 2018, , .		13
49	elephant56. , 2016, , .		12
50	Cloud Forensic Readiness: Foundations. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2014, , 237-244.	0.3	12
51	Investigating Functional and Code Size Measures for Mobile Applications: A Replicated Study. Lecture Notes in Computer Science, 2015, , 271-287.	1.3	12
52	Adding symbolic information to picture models: definitions and properties. Theoretical Computer Science, 2005, 337, 51-104.	0.9	10
53	Approximate COSMIC Size to Early Estimate Web Application Development Effort. , 2013, , .		10

54 A Set of Metrics for the Effort Estimation of Mobile Apps. , 2017, , .

10

#	Article	IF	CITATIONS
55	Definition and evaluation of a COSMIC measurement procedure for sizing Web applications in a model-driven development environment. Information and Software Technology, 2018, 104, 144-161.	4.4	10
56	Toward static test flakiness prediction: a feasibility study. , 2021, , .		10
57	eWorkbook. International Journal of Distance Education Technologies, 2007, 5, 24-41.	2.9	9
58	Estimating Web Application Development Effort Using Web-COBRA and COSMIC: An Empirical Study. , 2009, , .		9
59	Software testing and Android applications: a large-scale empirical study. Empirical Software Engineering, 2022, 27, 1.	3.9	9
60	Assessing the effectiveness of approximate functional sizing approaches for effort estimation. Information and Software Technology, 2020, 123, 106308.	4.4	8
61	Non-redundant 2D strings. IEEE Transactions on Knowledge and Data Engineering, 1995, 7, 347-350.	5.7	7
62	Assessing the usability of a visual tool for the definition of e-learning processes. Journal of Visual Languages and Computing, 2008, 19, 721-737.	1.8	7
63	Spatial OnLine Analytical Processing of Geographic Data through the Google Earth Interface. Studies in Computational Intelligence, 2011, , 163-182.	0.9	7
64	Design and automation of a COSMIC measurement procedure based on UML models. Software and Systems Modeling, 2020, 19, 171-198.	2.7	7
65	Approximate COSMIC Size: The Quick/Early Method. , 2014, , .		6
66	Semantics-based inference algorithms for adaptive visual environments. IEEE Transactions on Software Engineering, 1996, 22, 730-750.	5.6	5
67	Using Support Vector Regression for Web Development Effort Estimation. Lecture Notes in Computer Science, 2009, , 255-271.	1.3	5
68	A Case Study on the Conversion of Function Points into COSMIC. , 2011, , .		5
69	Simple function points for effort estimation. , 2016, , .		5
70	Embedding Google Maps APIs into WebRatio for the Automatic Generation of Web GIS Applications. Lecture Notes in Computer Science, 2008, , 259-270.	1.3	5
71	Using Web Objects for Development Effort Estimation of Web Applications: A Replicated Study. Lecture Notes in Computer Science, 2011, , 186-201.	1.3	5
72	How Multi-Objective Genetic Programming Is Effective for Software Development Effort Estimation?. Lecture Notes in Computer Science, 2011, , 274-275.	1.3	5

#	Article	IF	CITATIONS
73	Automatic Generation of an Adaptive WebGIS. Lecture Notes in Computer Science, 2009, , 171-186.	1.3	5
74	Good Fences Make Good Neighbours? On the Impact of Cultural and Geographical Dispersion on Community Smells. , 2022, , .		5
75	Symbolic Picture Languages and their Decidability and Complexity Properties. Journal of Visual Languages and Computing, 1999, 10, 381-419.	1.8	4
76	On regular drawn symbolic picture languages. Information and Computation, 2003, 187, 209-245.	0.7	4
77	Conversion from IFPUG FPA to COSMIC: Within-vs Without-Company Equations. , 2014, , .		4
78	Towards evolutionary machine learning comparison, competition, and collaboration with a multi-cloud platform. , 2017, , .		4
79	A WebML-Based Approach for the Development of Web GIS Applications. Lecture Notes in Computer Science, 2007, , 385-397.	1.3	4
80	Towards Automatic Service Level Agreements Information Extraction. , 2016, , .		4
81	A COSMIC-FFP Based Method to Estimate Web Application Development Effort. Lecture Notes in Computer Science, 2004, , 161-165.	1.3	3
82	Visual Language-Based System for Designing and Presenting E-Learning Courses. International Journal of Distance Education Technologies, 2005, 3, 1-19.	2.9	3
83	From Function Points to COSMIC - A Transfer Learning Approach for Effort Estimation. Lecture Notes in Computer Science, 2015, , 251-267.	1.3	3
84	An Empirical Study on the Use of Web-COBRA and Web Objects to Estimate Web Application Development Effort. Lecture Notes in Computer Science, 2009, , 213-220.	1.3	3
85	Using COSMIC for the Functional Size Measurement of Distributed Applications in Cloud Environments. Computer Communications and Networks, 2017, , 43-58.	0.8	2
86	Logging and Analyzing User's Interactions in Web Portals. Lecture Notes in Business Information Processing, 2008, , 213-229.	1.0	2
87	A User-Centered Methodology to Generate Visual Modeling Environments. , 0, , 219-226.		2
88	A Lean Approach to Estimate the Functional Size of Operating Applications. , 2013, , .		1
89	A Replicated Study Comparing Web Effort Estimation Techniques. Lecture Notes in Computer Science, 2007, , 423-435.	1.3	1
90	Can Expert Opinion Improve Effort Predictions When Exploiting Cross-Company Datasets? - A Case Study in a Small/Medium Company. Lecture Notes in Computer Science, 2019, , 280-295.	1.3	1

0

#	Article	IF	CITATIONS
91	Exploiting XPG for Visual Languages Definition, Analysis and Development. Electronic Notes in Theoretical Computer Science, 2003, 82, 612-627.	0.9	0
92	Run-time conflict detection in visual language parsing. Journal of Computer Languages, 2020, 57, 100943.	2.1	0
93	A Simulation Environment to Assess Driving Performances while Interacting with On-board Telematics Systems. Lecture Notes in Business Information Processing, 2008, , 439-451.	1.0	0

94 SEAMAN. , 0, , 742-757.

7