
Gene S Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2861941/publications.pdf Version: 2024-02-01

CENE S TAN

#	Article	IF	CITATIONS
1	A single-shot adenoviral vaccine provides hemagglutinin stalk-mediated protection against heterosubtypic influenza challenge in mice. Molecular Therapy, 2022, 30, 2024-2047.	8.2	14
2	Early non-neutralizing, afucosylated antibody responses are associated with COVID-19 severity. Science Translational Medicine, 2022, 14, eabm7853.	12.4	71
3	TNF-α+ CD4+ TÂcells dominate the SARS-CoV-2 specific T cell response in COVID-19 outpatients and are associated with durable antibodies. Cell Reports Medicine, 2022, 3, 100640.	6.5	15
4	Proinflammatory IgG Fc structures in patients with severe COVID-19. Nature Immunology, 2021, 22, 67-73.	14.5	239
5	The Zika virus NS1 protein as a vaccine target. , 2021, , 367-376.		0
6	SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand?. Advanced Drug Delivery Reviews, 2021, 172, 314-338.	13.7	75
7	Monoclonal Antibodies with Neutralizing Activity and Fc-Effector Functions against the Machupo Virus Glycoprotein. Journal of Virology, 2020, 94, .	3.4	22
8	Neutralizing Monoclonal Antibodies against the Gn and the Gc of the Andes Virus Glycoprotein Spike Complex Protect from Virus Challenge in a Preclinical Hamster Model. MBio, 2020, 11, .	4.1	31
9	Innate Immune Response to Influenza Virus at Single-Cell Resolution in Human Epithelial Cells Revealed Paracrine Induction of Interferon Lambda 1. Journal of Virology, 2019, 93, .	3.4	65
10	The L46P Mutant Confers a Novel Allosteric Mechanism of Resistance Toward the Influenza A Virus M2 S31N Proton Channel Blockers. Molecular Pharmacology, 2019, 96, 148-157.	2.3	14
11	Human Monoclonal Antibodies Potently Neutralize Zika Virus and Select for Escape Mutations on the Lateral Ridge of the Envelope Protein. Journal of Virology, 2019, 93, .	3.4	12
12	Optimization of qRT-PCR assay for zika virus detection in human serum and urine. Virus Research, 2019, 263, 173-178.	2.2	17
13	A Method to Assess Fc-mediated Effector Functions Induced by Influenza Hemagglutinin Specific Antibodies. Journal of Visualized Experiments, 2018, , .	0.3	3
14	Human antibodies targeting Zika virus NS1 provide protection against disease in a mouse model. Nature Communications, 2018, 9, 4560.	12.8	88
15	Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice. Nature Communications, 2017, 8, 846.	12.8	134
16	Increasing the breadth and potency of response to the seasonal influenza virus vaccine by immune complex immunization. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10172-10177.	7.1	42
17	Generation of Escape Variants of Neutralizing Influenza Virus Monoclonal Antibodies. Journal of Visualized Experiments, 2017, , .	0.3	8
18	Broadly protective murine monoclonal antibodies against influenza B virus target highly conserved neuraminidase epitopes. Nature Microbiology, 2017, 2, 1415-1424.	13.3	96

GENE S TAN

#	Article	IF	CITATIONS
19	Synthetic Toll-Like Receptor 4 (TLR4) and TLR7 Ligands Work Additively via MyD88 To Induce Protective Antiviral Immunity in Mice. Journal of Virology, 2017, 91, .	3.4	32
20	Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection. PLoS Pathogens, 2016, 12, e1005578.	4.7	124
21	Cryo-electron Microscopy Structures of Chimeric Hemagglutinin Displayed on a Universal Influenza Vaccine Candidate. MBio, 2016, 7, e00257.	4.1	26
22	Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11931-11936.	7.1	153
23	Broadly Neutralizing Hemagglutinin Stalk-Specific Antibodies Induce Potent Phagocytosis of Immune Complexes by Neutrophils in an Fc-Dependent Manner. MBio, 2016, 7, .	4.1	100
24	Optimal activation of Fc-mediated effector functions by influenza virus hemagglutinin antibodies requires two points of contact. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5944-E5951.	7.1	108
25	Both Neutralizing and Non-Neutralizing Human H7N9 Influenza Vaccine-Induced Monoclonal Antibodies Confer Protection. Cell Host and Microbe, 2016, 19, 800-813.	11.0	238
26	Influenza A Viruses Expressing Intra- or Intergroup Chimeric Hemagglutinins. Journal of Virology, 2016, 90, 3789-3793.	3.4	42
27	Hemagglutinin Stalk- and Neuraminidase-Specific Monoclonal Antibodies Protect against Lethal H10N8 Influenza Virus Infection in Mice. Journal of Virology, 2016, 90, 851-861.	3.4	71
28	Direct Administration in the Respiratory Tract Improves Efficacy of Broadly Neutralizing Anti-Influenza Virus Monoclonal Antibodies. Antimicrobial Agents and Chemotherapy, 2015, 59, 4162-4172.	3.2	58
29	Vaccination with soluble headless hemagglutinin protects mice from challenge with divergent influenza viruses. Vaccine, 2015, 33, 3314-3321.	3.8	73
30	Vaccination with Adjuvanted Recombinant Neuraminidase Induces Broad Heterologous, but Not Heterosubtypic, Cross-Protection against Influenza Virus Infection in Mice. MBio, 2015, 6, e02556.	4.1	173
31	Anti-HA Glycoforms Drive B Cell Affinity Selection and Determine Influenza Vaccine Efficacy. Cell, 2015, 162, 160-169.	28.9	171
32	Preexisting human antibodies neutralize recently emerged H7N9 influenza strains. Journal of Clinical Investigation, 2015, 125, 1255-1268.	8.2	115
33	Divergent H7 Immunogens Offer Protection from H7N9 Virus Challenge. Journal of Virology, 2014, 88, 3976-3985.	3.4	52
34	Broadly neutralizing hemagglutinin stalk–specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nature Medicine, 2014, 20, 143-151.	30.7	680
35	Characterization of a Broadly Neutralizing Monoclonal Antibody That Targets the Fusion Domain of Group 2 Influenza A Virus Hemagglutinin. Journal of Virology, 2014, 88, 13580-13592.	3.4	110
36	Assessment of Influenza Virus Hemagglutinin Stalk-Based Immunity in Ferrets. Journal of Virology, 2014, 88, 3432-3442.	3.4	128

Gene S Tan

#	Article	IF	CITATIONS
37	Hemagglutinin Stalk-Based Universal Vaccine Constructs Protect against Group 2 Influenza A Viruses. Journal of Virology, 2013, 87, 10435-10446.	3.4	174
38	<i>In Vivo</i> Bioluminescent Imaging of Influenza A Virus Infection and Characterization of Novel Cross-Protective Monoclonal Antibodies. Journal of Virology, 2013, 87, 8272-8281.	3.4	133
39	Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2573-2578.	7.1	244
40	Influenza Viruses Expressing Chimeric Hemagglutinins: Globular Head and Stalk Domains Derived from Different Subtypes. Journal of Virology, 2012, 86, 5774-5781.	3.4	241
41	A Virus-Like Particle That Elicits Cross-Reactive Antibodies to the Conserved Stem of Influenza Virus Hemagglutinin. Journal of Virology, 2012, 86, 11686-11697.	3.4	71
42	A Carboxy-Terminal Trimerization Domain Stabilizes Conformational Epitopes on the Stalk Domain of Soluble Recombinant Hemagglutinin Substrates. PLoS ONE, 2012, 7, e43603.	2.5	146
43	Hemagglutinin Stalk-Reactive Antibodies Are Boosted following Sequential Infection with Seasonal and Pandemic H1N1 Influenza Virus in Mice. Journal of Virology, 2012, 86, 10302-10307.	3.4	93
44	A Pan-H1 Anti-Hemagglutinin Monoclonal Antibody with Potent Broad-Spectrum Efficacy <i>In Vivo</i> . Journal of Virology, 2012, 86, 6179-6188.	3.4	150
45	Broadly Protective Monoclonal Antibodies against H3 Influenza Viruses following Sequential Immunization with Different Hemagglutinins. PLoS Pathogens, 2010, 6, e1000796.	4.7	251
46	Attenuation of Rabies Virulence: Takeover by the Cytoplasmic Domain of Its Envelope Protein. Science Signaling, 2010, 3, ra5.	3.6	100
47	Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18979-18984.	7.1	273
48	Replicationâ€Deficient Rabies Virus–Based Vaccines Are Safe and Immunogenic in Mice and Nonhuman Primates. Journal of Infectious Diseases, 2009, 200, 1251-1260.	4.0	49
49	Intravenous Inoculation of a Bat-Associated Rabies Virus Causes Lethal Encephalopathy in Mice through Invasion of the Brain via Neurosecretory Hypothalamic Fibers. PLoS Pathogens, 2009, 5, e1000485.	4.7	35
50	Immune modulating effect by a phosphoprotein-deleted rabies virus vaccine vector expressing two copies of the rabies virus glycoprotein gene. Vaccine, 2008, 26, 6405-6414.	3.8	46
51	Guanylyl Cyclase C–Induced Immunotherapeutic Responses Opposing Tumor Metastases Without Autoimmunity. Journal of the National Cancer Institute, 2008, 100, 950-961.	6.3	48
52	PPEY Motif within the Rabies Virus (RV) Matrix Protein Is Essential for Efficient Virion Release and RV Pathogenicity. Journal of Virology, 2008, 82, 9730-9738.	3.4	76
53	The dynein light chain 8 binding motif of rabies virus phosphoprotein promotes efficient viral transcription. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7229-7234.	7.1	122
54	The application of reverse genetics technology in the study of rabies virus (RV) pathogenesis and for the development of novel RV vaccines. Journal of NeuroVirology, 2005, 11, 76-81.	2.1	44

#	Article	IF	CITATIONS
55	Strong cellular and humoral anti-HIV Env immune responses induced by a heterologous rhabdoviral prime–boost approach. Virology, 2005, 331, 82-93.	2.4	44
56	Rabies virus nucleoprotein as a carrier for foreign antigens. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9405-9410.	7.1	31