Jean-Noel Freund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2860141/publications.pdf

Version: 2024-02-01

66343 58581 7,394 135 42 82 citations h-index g-index papers 140 140 140 9685 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Mesalazine initiates an anti-oncogenic \hat{l}^2 -catenin / MUCDHL negative feed-back loop in colon cancer cells by cell-specific mechanisms. Biomedicine and Pharmacotherapy, 2022, 146, 112543.	5.6	3
2	CDX2 controls genes involved in the metabolism of 5-fluorouracil and is associated with reduced efficacy of chemotherapy in colorectal cancer. Biomedicine and Pharmacotherapy, 2022, 147, 112630.	5.6	7
3	Concurrent <i>CDX2 cis</i> deregulation and <i>UBTF::ATXN7L3</i> fusion define a novel high-risk subtype of B-cell ALL. Blood, 2022, 139, 3505-3518.	1.4	13
4	The atypical cadherin MUCDHL antagonizes colon cancer formation and inhibits oncogenic signaling through multiple mechanisms. Oncogene, 2021, 40, 522-535.	5.9	7
5	Renin-angiotensin system is involved in embryonic emergence of hematopoietic stem/progenitor cells. Stem Cells, 2021, 39, 636-649.	3.2	9
6	Deciphering the Role of Intestinal Crypt Cell Populations in Resistance to Chemotherapy. Cancer Research, 2021, 81, 2730-2744.	0.9	4
7	Murine intestinal stem cells are highly sensitive to modulation of the T3/TRα1-dependent pathway. Development (Cambridge), 2021, 148, .	2.5	10
8	CDX2 regulates ACE expression in blood development and leukemia cells. Blood Advances, 2021, 5, 2012-2016.	5.2	1
9	Temporal multiomic modeling reveals a B-cell receptor proliferative program in chronic lymphocytic leukemia. Leukemia, 2021, 35, 1463-1474.	7.2	6
10	CDX2 expression in the hematopoietic lineage promotes leukemogenesis via TGF \hat{l}^2 inhibition. Molecular Oncology, 2021, 15, 2318-2329.	4.6	6
11	CDX2 inducible microRNAs sustain colon cancer by targeting multiple DNA damage response pathway factors. Journal of Cell Science, 2021, 134, .	2.0	4
12	A Core Response to the CDX2 Homeoprotein During Development and in Pathologies. Frontiers in Genetics, 2021, 12, 744165.	2.3	3
13	Actomyosin, vimentin and LINC complex pull on osteosarcoma nuclei to deform on micropillar topography. Biomaterials, 2020, 234, 119746.	11.4	25
14	Anticancer activity of ruthenium and osmium cyclometalated compounds: identification of ABCB1 and EGFR as resistance mechanisms. Inorganic Chemistry Frontiers, 2020, 7, 678-688.	6.0	34
15	Severe head dysgenesis resulting from imbalance between anterior and posterior ontogenetic programs. Cell Death and Disease, 2019, 10, 812.	6.3	2
16	A redox ruthenium compound directly targets PHD2 and inhibits the HIF1 pathway to reduce tumor angiogenesis independently of p53. Cancer Letters, 2019, 440-441, 145-155.	7.2	28
17	A Core Proliferative Program Induced By B-Cell Receptor Stimulation in Chronic Lymphocytic Leukemia Cells. Blood, 2019, 134, 3777-3777.	1.4	O
18	The Cdx2 homeobox gene suppresses intestinal tumorigenesis through non–cell-autonomous mechanisms. Journal of Experimental Medicine, 2018, 215, 911-926.	8.5	33

#	Article	IF	Citations
19	Chromatin de-condensation by switching substrate elasticity. Scientific Reports, 2018, 8, 12655.	3.3	14
20	Fine-tuning and autoregulation of the intestinal determinant and tumor suppressor homeobox gene CDX2 by alternative splicing. Cell Death and Differentiation, 2017, 24, 2173-2186.	11.2	13
21	CDX2 is a Biomarker of Better Prognosis in Pancreatic Ductal Adenocarcinoma (PDA). Gastroenterology, 2017, 152, S275-S276.	1.3	1
22	The tumor suppressor CDX2 opposes pro-metastatic biomechanical modifications of colon cancer cells through organization of the actin cytoskeleton. Cancer Letters, 2017, 386, 57-64.	7.2	28
23	Histone hypoacetylation contributes to CXCL12 downregulation in colon cancer: impact on tumor growth and cell migration. Oncotarget, 2017, 8, 38351-38366.	1.8	13
24	Estimation of subject coregistration errors during multimodal preclinical imaging using separate instruments: origins and avoidance of artifacts. Journal of Medical Imaging, 2017, 4, 1.	1.5	1
25	Enhanced Ghrelin Levels and Hypothalamic Orexigenic AgRP and NPY Neuropeptide Expression in Models of Jejuno-Colonic Short Bowel Syndrome. Scientific Reports, 2016, 6, 28345.	3.3	32
26	783 Non-Cell-Autonomous Tumor Suppressor Activity of the Intestinal Homeobox Gene CDX2. Gastroenterology, 2016, 150, S162.	1.3	0
27	Distinct mechanisms for opposite functions of homeoproteins Cdx2 and HoxB7 in double-strand break DNA repair in colon cancer cells. Cancer Letters, 2016, 374, 208-215.	7.2	10
28	Broader expression of the mouse platelet factorÂ4â€cre transgene beyond the megakaryocyte lineage. Journal of Thrombosis and Haemostasis, 2015, 13, 115-125.	3.8	49
29	Cell guidance into quiescent state through chromatin remodeling induced by elastic modulus of substrate. Biomaterials, 2015, 37, 144-155.	11.4	21
30	Extending the functions of the homeotic transcription factor Cdx2 in the digestive system through nontranscriptional activities. World Journal of Gastroenterology, 2015, 21, 1436.	3.3	17
31	Combined NADPH Oxidase 1 and Interleukin 10 Deficiency Induces Chronic Endoplasmic Reticulum Stress and Causes Ulcerative Colitis-Like Disease in Mice. PLoS ONE, 2014, 9, e101669.	2.5	49
32	Transcriptional Regulation of the Intestinal Nuclear Bile Acid Farnesoid X Receptor (FXR) by the caudal-related Homeobox 2 (CDX2). Journal of Biological Chemistry, 2014, 289, 28421-28432.	3 . 4	12
33	TAF4 Inactivation Reveals the 3 Dimensional Growth Promoting Activities of Collagen 6A3. PLoS ONE, 2014, 9, e87365.	2.5	12
34	Gastric intrinsic factor deficiency with combined GIF heterozygous mutations and FUT2 secretor variant. Biochimie, 2013, 95, 995-1001.	2.6	23
35	Increasing the oxygen load by treatment with myo-inositol trispyrophosphate reduces growth of colon cancer and modulates the intestine homeobox gene Cdx2. Oncogene, 2013, 32, 4313-4318.	5.9	24
36	Molecular and cellular effects of vitamin B12 in brain, myocardium and liver through its role as co-factor of methionine synthase. Biochimie, 2013, 95, 1033-1040.	2.6	72

#	Article	IF	Citations
37	Regulation of the tumor suppressor homeogene Cdx2 by HNF4α in intestinal cancer. Oncogene, 2013, 32, 3782-3788.	5.9	36
38	Directing nuclear deformation on micropillared surfaces by substrate geometry and cytoskeleton organization. Biomaterials, 2013, 34, 2991-3001.	11.4	98
39	CDX2 regulation by the RNA-binding protein MEX3A: impact on intestinal differentiation and stemness. Nucleic Acids Research, 2013, 41, 3986-3999.	14.5	94
40	Understanding epithelial homeostasis in the intestine. Tissue Barriers, 2013, 1, e24965.	3.2	41
41	Contribution of Soft Substrates to Malignancy and Tumor Suppression during Colon Cancer Cell Division. PLoS ONE, 2013, 8, e78468.	2.5	3
42	Immunolabelling of Thin Slices of Mouse Descending Colon and Jejunum. Bio-protocol, 2013, 3, .	0.4	0
43	The tumor suppressor <i>Apc</i> controls planar cell polarities central to gut homeostasis. Journal of Cell Biology, 2012, 198, 331-341.	5.2	31
44	Cdx2 determines the fate of postnatal intestinal endoderm. Development (Cambridge), 2012, 139, 465-474.	2.5	85
45	Cdx2 homeoprotein inhibits non-homologous end joining in colon cancer but not in leukemia cells. Nucleic Acids Research, 2012, 40, 3456-3469.	14.5	22
46	144 The HNF4alpha-Cdx2 Axis in the Intestinal Cancer. European Journal of Cancer, 2012, 48, S35.	2.8	0
47	Cdx2 Controls Expression of the Protocadherin Mucdhl, an Inhibitor of Growth and \hat{I}^2 -Catenin Activity in Colon Cancer Cells. Gastroenterology, 2012, 142, 875-885.e3.	1.3	45
48	Gastric intestinal metaplasia revisited: function and regulation of CDX2. Trends in Molecular Medicine, 2012, 18, 555-563.	6.7	65
49	The control of chromosome segregation during mitosis in epithelial cells by substrate elasticity. Biomaterials, 2012, 33, 798-809.	11.4	14
50	Concerted involvement of $Cdx/$ Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone. Development (Cambridge), 2011, 138, 3451-3462.	2.5	72
51	Immunohistochemical expression of CDX2, \hat{l}^2 -catenin, and TP53 in inflammatory bowel disease-associated colorectal cancer. Inflammatory Bowel Diseases, 2011, 17, 232-240.	1.9	25
52	CDX2 autoregulation in human intestinal metaplasia of the stomach: impact on the stability of the phenotype. Gut, 2011, 60, 290-298.	12.1	52
53	Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone. Development (Cambridge), 2011, 138, 3859-3859.	2.5	7
54	Pathophysiology of intestinal metaplasia of the stomach: emphasis on <i>CDX2</i> regulation. Biochemical Society Transactions, 2010, 38, 358-363.	3.4	20

#	Article	IF	CITATIONS
55	NADPH Oxidase 1 Modulates WNT and NOTCH1 Signaling To Control the Fate of Proliferative Progenitor Cells in the Colon. Molecular and Cellular Biology, 2010, 30, 2636-2650.	2.3	175
56	<i>CDX2</i> in Congenital Gut Gastric-Type Heteroplasia and Intestinal-Type Meckel Diverticula. Pediatrics, 2010, 126, e723-e727.	2.1	8
57	867 An Alternative Splicing/Translation Variant Fine-Tunes the Activity of the Homeotic Transcription Factor CDx2 in the Gut. Gastroenterology, 2010, 138, S-120.	1.3	O
58	Targeted Apc; Twist Double-Mutant Mice: A New Model of Spontaneous Osteosarcoma That Mimics the Human Disease. Translational Oncology, 2010, 3, 344-353.	3.7	23
59	Intestinal Lactase as an Autologous \hat{I}^2 -Galactosidase Reporter Gene for In Vivo Gene Expression Studies. Human Gene Therapy, 2009, 20, 21-30.	2.7	14
60	Cdx and Hox Genes Differentially Regulate Posterior Axial Growth in Mammalian Embryos. Developmental Cell, 2009, 17, 516-526.	7.0	225
61	Expression and localisation of insulin receptor substrate 2 in normal intestine and colorectal tumours. Regulation by intestine-specific transcription factor CDX2. Gut, 2009, 58, 1250-1259.	12.1	21
62	Anchoring Secreted Proteins in Endoplasmic Reticulum by Plant Oleosin: The Example of Vitamin B12 Cellular Sequestration by Transcobalamin. PLoS ONE, 2009, 4, e6325.	2.5	15
63	Key elements of the BMP/SMAD pathway co″ocalize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. Journal of Pathology, 2008, 215, 411-420.	4.5	58
64	The intestine-specific homeobox gene Cdx2 decreases mobility and antagonizes dissemination of colon cancer cells. Oncogene, 2008, 27, 107-115.	5.9	90
65	Cdx1, a dispensable homeobox gene for gut development with limited effect in intestinal cancer. Oncogene, 2008, 27, 4497-4502.	5.9	30
66	Multiple Regulatory Regions Control the Complex Expression Pattern of the Mouse Cdx2 Homeobox Gene. Gastroenterology, 2008, 135, 1238-1247.e3.	1.3	71
67	Differential regulation of CDX1 and CDX2 gene expression by deficiency in methyl group donors. Biochimie, 2008, 90, 697-704.	2.6	15
68	Inflammatory bowel disease in rats: Bacterial and chemical interaction. World Journal of Gastroenterology, 2008, 14, 4028.	3.3	26
69	INTESTINAL LACTASE AS AN AUTOLOGOUS \hat{l}^2 -GALACTOSIDASE REPORTER GENE FOR IN VIVO GENE EXPRESSION STUDIES. Human Gene Therapy, 2008, .	2.7	0
70	The Human Mucin MUC4 Is Transcriptionally Regulated by Caudal-related Homeobox, Hepatocyte Nuclear Factors, Forkhead Box A, and GATA Endodermal Transcription Factors in Epithelial Cancer Cells. Journal of Biological Chemistry, 2007, 282, 22638-22650.	3.4	45
71	Identification and characterization of human Mex-3 proteins, a novel family of evolutionarily conserved RNA-binding proteins differentially localized to processing bodies. Nucleic Acids Research, 2007, 35, 1289-1300.	14.5	127
72	Multiple-contrast X-ray micro-CT visualization of colon malformations and tumours in situ in living mice. Comptes Rendus - Biologies, 2007, 330, 821-827.	0.2	17

#	Article	IF	Citations
73	Frequent rearrangements and amplification of the CDX2 homeobox gene in human sporadic colorectal cancers with chromosomal instability. Cancer Letters, 2007, 247, 197-203.	7.2	25
74	The Microenvironment Controls CDX2 Homeobox Gene Expression in Colorectal Cancer Cells. American Journal of Pathology, 2007, 170, 733-744.	3.8	25
75	Different effects of the Cdx1 and Cdx2 homeobox genes in a murine model of intestinal inflammation. Gut, 2007, 56 , $1688-1695$.	12.1	38
76	Precancerous Lesions Upon Sporadic Activation of \hat{l}^2 -Catenin in Mice. Gastroenterology, 2007, 132, 1299-1308.	1.3	13
77	Sprouty2 inhibits BDNF-induced signaling and modulates neuronal differentiation and survival. Cell Death and Differentiation, 2007, 14, 1802-1812.	11.2	65
78	Bile Acids Induce Ectopic Expression of Intestinal Guanylyl Cyclase C Through Nuclear Factor-κB and Cdx2 in Human Esophageal Cells. Gastroenterology, 2006, 130, 1191-1206.	1.3	87
79	<i>CDXâ€2</i> homeobox gene expression in human gastric carcinoma and precursor lesions. Journal of Gastroenterology and Hepatology (Australia), 2006, 21, 438-442.	2.8	36
80	Functional interaction between the homeoprotein CDX1 and the transcriptional machinery containing the TATA-binding protein. Nucleic Acids Research, 2006, 35, 175-185.	14.5	8
81	Phosphorylation of the homeotic tumor suppressor Cdx2 mediates its ubiquitin-dependent proteasome degradation. Oncogene, 2005, 24, 7955-7963.	5.9	39
82	Laminin isoforms: biological roles and effects on the intracellular distribution of nuclear proteins in intestinal epithelial cells. Experimental Cell Research, 2005, 303, 494-503.	2.6	49
83	Gut Epithelium. , 2005, , 736-739.		0
84	Down-Regulation of the Homeodomain Factor Cdx2 in Colorectal Cancer by Collagen Type I. Cancer Research, 2004, 64, 6973-6977.	0.9	126
85	Down-regulation of the Tumor Suppressor PTEN by the Tumor Necrosis Factor-α/Nuclear Factor-κB (NF-κB)-inducing Kinase/NF-κB Pathway Is Linked to a Default lκB-α Autoregulatory Loop. Journal of Biological Chemistry, 2004, 279, 4285-4291.	3.4	95
86	SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. Journal of Cell Biology, 2004, 166, 37-47.	5.2	422
87	Klotho Is a Novel β-Glucuronidase Capable of Hydrolyzing Steroid β-Glucuronides. Journal of Biological Chemistry, 2004, 279, 9777-9784.	3.4	201
88	Control of differentiation-induced calbindin-D9kgene expression in Caco-2 cells by cdx-2 and HNF-1α. American Journal of Physiology - Renal Physiology, 2004, 287, G943-G953.	3.4	31
89	Homeodomain protein CDX2 regulates COX-2 expression in colorectal cancer. Biochemical and Biophysical Research Communications, 2004, 315, 93-99.	2.1	24
90	Endoderm- and mesenchyme-dependent commitment of the differentiated epithelial cell types in the developing intestine of rat. Differentiation, 2003, 71, 163-169.	1.9	15

#	Article	IF	Citations
91	Cdx1 homeobox gene during human colon cancer progression. Oncogene, 2003, 22, 7913-7921.	5.9	29
92	The homeobox gene Cdx2 has a tumor-suppressor function in the adult colon, distinct from its homeotic role during intestinal development. Gastroenterology, 2003, 124, A130-A131.	1.3	0
93	Differential regulation of the glucose-6-phosphatase TATA box by intestine-specific homeodomain proteins CDX1 and CDX2. Nucleic Acids Research, 2003, 31, 5238-5246.	14.5	34
94	The Cdx2 homeobox gene has a tumour suppressor function in the distal colon in addition to a homeotic role during gut development. Gut, 2003, 52, 1465-1471.	12.1	201
95	Wnt/ \hat{l}^2 -Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway. Molecular and Cellular Biology, 2002, 22, 1172-1183.	2.3	1,498
96	Stimulation of the intestinal Cdx2 homeobox gene by butyrate in colon cancer cells. Gut, 2002, 50, 525-529.	12.1	56
97	PTEN and TNF-α regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-βB–dependent pathway. Gastroenterology, 2002, 123, 1163-1178.	1.3	121
98	The homeobox gene Cdx1 belongs to the p53–p21WAF–Bcl-2 network in intestinal epithelial cells. Biochemical and Biophysical Research Communications, 2002, 297, 607-615.	2.1	26
99	Stimulation of Cdx1 by oncogenic \hat{l}^2 -catenin/Tcf4 in colon cancer cells; opposite effect of the CDX2 homeoprotein. FEBS Letters, 2002, 518, 83-87.	2.8	27
100	Differentially expressed endoderm and mesenchyme genes along the fetal rat intestine. Genesis, 2001, 29, 55-59.	1.6	5
101	Functional Interference between Thyroid Hormone Receptor α (TRα) and Natural Truncated TRÎ"α Isoforms in the Control of Intestine Development. Molecular and Cellular Biology, 2001, 21, 4761-4772.	2.3	127
102	The homeobox gene CDx-2 is up-regulated in HT-29 cells by PI3-kinase inhibition. Gastroenterology, 2000, 118, A820.	1.3	0
103	Promotion of intestinal carcinogenesis by dietary methionine. Carcinogenesis, 1999, 20, 493-497.	2.8	17
104	Production of low-lactose milk by ectopic expression of intestinal lactase in the mouse mammary gland. Nature Biotechnology, 1999, 17, 160-164.	17.5	64
105	Downregulation of the colon tumour-suppressor homeobox gene Cdx-2 by oncogenic ras. Oncogene, 1999, 18, 87-92.	5.9	76
106	Involvement of T3Rα- and β-receptor subtypes in mediation of T3 functions during postnatal murine intestinal development☆, ☆⯆, ☠Gastroenterology, 1999, 116, 1367-1378.	1.3	110
107	Prédigestion d'un composant du lait, le lactose, dans la glande mammaire Medecine/Sciences, 1999, 15, 1058.	0.2	0
108	Intestinal Epithelialâ€Mesenchymal Cell Interactions. Annals of the New York Academy of Sciences, 1998, 859, 1-17.	3.8	118

#	Article	IF	CITATIONS
109	The <i>Cdx-1 </i> and <i>Cdx-2 </i> homeobox genes in the intestine. Biochemistry and Cell Biology, 1998, 76, 957-969.	2.0	182
110	Cellular and molecular partners involved in gut morphogenesis and differentiation. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 847-856.	4.0	66
111	Subepithelial fibroblast cell lines from different levels of gut axis display regional characteristics. American Journal of Physiology - Renal Physiology, 1998, 274, G945-G954.	3.4	40
112	The <i>Cdx-1</i> and <i>Cdx-2</i> homeobox genes in the intestine. Biochemistry and Cell Biology, 1998, 76, 957-969.	2.0	111
113	Key Role of the Cdx2 Homeobox Gene in Extracellular Matrix–mediated Intestinal Cell Differentiation. Journal of Cell Biology, 1997, 139, 1553-1565.	5 . 2	264
114	Identification of homologues of the mammalian intestinal lactase gene in non-mammals (birds and) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 50
115	Functional diversity and interactions between the repeat domains of rat intestinal lactase. Biochemical Journal, 1997, 327, 95-103.	3.7	12
116	Verification of the lactase site of rat lactase-phlorizin hydrolase by site-directed mutagenesis. Gastroenterology, 1995, 109, 1234-1240.	1.3	14
117	Ultrastructural study of intestinal lactase gene expression. Biology of the Cell, 1995, 83, 211-217.	2.0	9
118	Precocious and reversible expression of sucrase-isomaltase unrelated to intestinal cell turnover. American Journal of Physiology - Renal Physiology, 1994, 266, G568-G575.	3.4	7
119	Fetal endoderm primarily holds the temporal and positional information required for mammalian intestinal development Journal of Cell Biology, 1994, 126, 211-221.	5.2	98
120	Thecis-elementCE-LPH1of the rat intestinal lactase gene promoter interacts in vitro with several nuclear factors present in endodermal tissues. FEBS Letters, 1994, 353, 108-112.	2.8	11
121	Multiple levels of control of the stage- and region-specific expression of rat intestinal lactase Journal of Cell Biology, 1993, 123, 1577-1586.	5.2	38
122	The rat LPH <i>Gene</i> 5′ region: comparative structure with the human gene. DNA Sequence, 1992, 3, 119-121.	0.7	11
123	Gradient expression of Cdxalong the rat intestine throughout postnatal development. FEBS Letters, 1992, 314, 163-166.	2.8	45
124	Nutritional control of intestinal lactase in the rat. Reproduction, Nutrition, Development, 1992, 32, 485-485.	1.9	0
125	Sequence of the precursor of intestinal lactase-phlorizin hydrolase from fetal rat. Gene, 1991, 103, 275-276.	2.2	31
126	Derivatives of Plant Beta-Glucans Are Hydrolyzed by Intestinal Lactase-Phlorizin Hydrolase of Mammals. Enzyme, 1991, 45, 71-74.	0.7	10

#	Article	IF	CITATIONS
127	Lactase expression is controlled differently in the jejunum and ileum during development in rats. Gastroenterology, 1991, 100, 388-394.	1.3	52
128	Adaptation of intestinal hydrolases to starvation in rats: effect of thyroid function. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1991, 161, 357-61.	1.5	14
129	Specific expression of lactase in the jejunum and colon during postnatal development and hormone treatments in the rat. Biochemical Journal, 1990, 268, 99-103.	3.7	33
130	Type IV collagen mRNA accumulates in the mesenchymal compartment at early stages of murine developing intestine Journal of Cell Biology, 1990, 110, 849-857.	5,2	75
131	Discrepancy between the intestinal lactase enzymatic activity and mRNA accumulation in sucklings and adults Effect of starvation and thyroxine treatment. FEBS Letters, 1989, 248, 39-42.	2.8	43
132	The rudimentary gene of Drosophila melanogaster encodes four enzymic functions. Journal of Molecular Biology, 1987, 193, 1-13.	4.2	110
133	Molecular organization of the rudimentary gene of Drosophila melanogaster. Journal of Molecular Biology, 1986, 189, 25-36.	4.2	35
134	Organization of transcription units around the Drosophila melanogaster rudimentary locus and temporal pattern of expression. Molecular Genetics and Genomics, 1986, 202, 493-499.	2.4	14
135	Ulcerative Colitis-Associated Colorectal Cancer Prevention by 5-Aminosalicylates: Current Status and Perspectives., 0,,.		0