
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2859704/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | EP <sub>1</sub> receptor antagonism mitigates early and late stage renal fibrosis. Acta Physiologica, 2022, 234, e13780.                                                                                                          | 3.8  | 6         |
| 2  | Acute pyelonephritis: Increased plasma membrane targeting of renal aquaporinâ€⊋. Acta Physiologica,<br>2022, 234, e13760.                                                                                                         | 3.8  | 7         |
| 3  | Meeting Preview: Europhysiology 2022 Let's meet for real. , 2022, , 38.                                                                                                                                                           |      | 1         |
| 4  | Europhysiology 2022: Let's meet for real. Acta Physiologica, 2022, 235, e13825.                                                                                                                                                   | 3.8  | 0         |
| 5  | The bacteria and the host: a story of purinergic signaling in urinary tract infections. American<br>Journal of Physiology - Cell Physiology, 2021, 321, C134-C146.                                                                | 4.6  | 4         |
| 6  | Prevention of P2 Receptor-Dependent Thrombocyte Activation by Pore-Forming Bacterial Toxins<br>Improves Outcome in A Murine Model of Urosepsis. International Journal of Molecular Sciences, 2020,<br>21, 5652.                   | 4.1  | 4         |
| 7  | How Does Aldosterone Work in theβ-Intercalated Cell?. Journal of the American Society of Nephrology:<br>JASN, 2020, 31, 451-452.                                                                                                  | 6.1  | 0         |
| 8  | Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiological Reviews, 2020, 100, 1229-1289.                                                                                                                 | 28.8 | 20        |
| 9  | P2X1 receptor blockers reduce the number of circulating thrombocytes and the overall survival of urosepsis with haemolysin-producing Escherichia coli. Purinergic Signalling, 2019, 15, 265-276.                                  | 2.2  | 7         |
| 10 | Lack of P2X7 Receptors Protects against Renal Fibrosis after Pyelonephritis with<br>α-Hemolysin–Producing Escherichia coli. American Journal of Pathology, 2019, 189, 1201-1211.                                                  | 3.8  | 11        |
| 11 | αâ€Haemolysin production, as a single factor, causes fulminant sepsis in a model of <scp><i>Escherichia<br/>coli</i></scp> â€induced bacteraemia. Cellular Microbiology, 2019, 21, e13017.                                        | 2.1  | 13        |
| 12 | Comment on " <i>Aggregatibacter actinomycetemcomitans</i> –induced hypercitrullination links<br>periodontal infection to autoimmunity in rheumatoid arthritis― Science Translational Medicine, 2018,<br>10, .                     | 12.4 | 24        |
| 13 | Erythrocyte P2X1 receptor expression is correlated with change in haematocrit in patients admitted to the ICU with blood pathogen-positive sepsis. Critical Care, 2018, 22, 181.                                                  | 5.8  | 9         |
| 14 | Loop Diuretics Diminish Hemolysis Induced by α-Hemolysin from Escherichia coli. Journal of Membrane<br>Biology, 2017, 250, 301-313.                                                                                               | 2.1  | 5         |
| 15 | Inhibition of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase by thapsigargin analogs induces cell<br>death via ER Ca2+ depletion and the unfolded protein response. Journal of Biological Chemistry, 2017,<br>292, 19656-19673. | 3.4  | 147       |
| 16 | P2X Receptors Inhibit NaCl Absorption in mTAL Independently of Nitric Oxide. Frontiers in Physiology, 2017, 8, 18.                                                                                                                | 2.8  | 6         |
| 17 | P2X1, P2X4, and P2X7 Receptor Knock Out Mice Expose Differential Outcome of Sepsis Induced by<br>α-Haemolysin Producing Escherichia coli. Frontiers in Cellular and Infection Microbiology, 2017, 7, 113.                         | 3.9  | 39        |
| 18 | Intact colonic <scp>K<sub>C</sub></scp> <sub>a</sub> 1.1 channel activity in <scp>KCNMB</scp> 2<br>knockout mice. Physiological Reports, 2017, 5, e13179.                                                                         | 1.7  | 3         |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Inhibition of P2X Receptors Protects Human Monocytes against Damage by Leukotoxin from<br>Aggregatibacter actinomycetemcomitans and α-Hemolysin from Escherichia coli. Infection and<br>Immunity, 2016, 84, 3114-3130.                | 2.2 | 22        |
| 20 | Hyperaldosteronism after decreased renal K <sup>+</sup> excretion in KCNMB2 knockout mice.<br>American Journal of Physiology - Renal Physiology, 2016, 310, F1035-F1046.                                                              | 2.7 | 13        |
| 21 | Being dedicated. American Journal of Physiology - Renal Physiology, 2015, 309, F835-F835.                                                                                                                                             | 2.7 | Ο         |
| 22 | Sorting out the paracrine kidney. American Journal of Physiology - Renal Physiology, 2015, 308, F1074-F1075.                                                                                                                          | 2.7 | 0         |
| 23 | [Ca2+] Oscillations and IL-6 Release Induced by α-Hemolysin from Escherichia coli Require P2 Receptor<br>Activation in Renal Epithelia. Journal of Biological Chemistry, 2015, 290, 14776-14784.                                      | 3.4 | 13        |
| 24 | Furosemide-induced urinary acidification is caused by pronounced H <sup>+</sup> secretion in the thick ascending limb. American Journal of Physiology - Renal Physiology, 2015, 309, F146-F153.                                       | 2.7 | 38        |
| 25 | The primary cilium as sensor of fluid flow: new building blocks to the model. A Review in the Theme:<br>Cell Signaling: Proteins, Pathways and Mechanisms. American Journal of Physiology - Cell Physiology,<br>2015, 308, C198-C208. | 4.6 | 70        |
| 26 | Bacterial RTX Toxins Allow Acute ATP Release from Human Erythrocytes Directly through the Toxin<br>Pore. Journal of Biological Chemistry, 2014, 289, 19098-19109.                                                                     | 3.4 | 54        |
| 27 | Sialic Acid Residues Are Essential for Cell Lysis Mediated by Leukotoxin from Aggregatibacter actinomycetemcomitans. Infection and Immunity, 2014, 82, 2219-2228.                                                                     | 2.2 | 18        |
| 28 | Primary cilium-dependent sensing of urinary flow and paracrine purinergic signaling. Seminars in Cell and Developmental Biology, 2013, 24, 3-10.                                                                                      | 5.0 | 33        |
| 29 | P2X Receptor-Dependent Erythrocyte Damage by α-Hemolysin from Escherichia coli Triggers<br>Phagocytosis by THP-1 Cells. Toxins, 2013, 5, 472-487.                                                                                     | 3.4 | 16        |
| 30 | P2Y2 receptor knock-out mice display normal NaCl absorption in medullary thick ascending limb.<br>Frontiers in Physiology, 2013, 4, 280.                                                                                              | 2.8 | 8         |
| 31 | Renal epithelial cells can release ATP by vesicular fusion. Frontiers in Physiology, 2013, 4, 238.                                                                                                                                    | 2.8 | 24        |
| 32 | Basolateral P2X receptors mediate inhibition of NaCl transport in mouse medullary thick ascending<br>limb (mTAL). American Journal of Physiology - Renal Physiology, 2012, 302, F487-F494.                                            | 2.7 | 30        |
| 33 | 17β-Estradiol induces nongenomic effects in renal intercalated cells through G protein-coupled estrogen receptor 1. American Journal of Physiology - Renal Physiology, 2012, 302, F358-F368.                                          | 2.7 | 44        |
| 34 | Assessment of the Effect of 24-Hour Aldosterone Administration on Protein Abundance in<br>Fluorescence-Sorted Mouse Distal Renal Tubules by Mass Spectrometry. Nephron Physiology, 2012, 121,<br>p9-p15.                              | 1.2 | 7         |
| 35 | Leukotoxin from <i>Aggregatibacter actinomycetemcomitans</i> causes shrinkage and P2X<br>receptor-dependent lysis of human erythrocytes. Cellular Microbiology, 2012, 14, 1904-1920.                                                  | 2.1 | 42        |
| 36 | The secretory KCa1.1 channel localises to crypts of distal mouse colon: functional and molecular evidence. Pflugers Archiv European Journal of Physiology, 2011, 462, 745-752.                                                        | 2.8 | 19        |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Haemolysis induced by α-toxin from Staphylococcus aureus requires P2X receptor activation. Pflugers<br>Archiv European Journal of Physiology, 2011, 462, 669-679.                                                                                      | 2.8  | 47        |
| 38 | Agonists that Increase [Ca2+]i Halt the Movement of Acidic Cytoplasmic Vesicles in MDCK Cells.<br>Journal of Membrane Biology, 2011, 244, 43-53.                                                                                                       | 2.1  | 2         |
| 39 | Python Erythrocytes Are Resistant to α-Hemolysin from Escherichia coli. Journal of Membrane Biology, 2011, 244, 131-140.                                                                                                                               | 2.1  | 23        |
| 40 | Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists<br>alleviates nephrogenic diabetes insipidus. Proceedings of the National Academy of Sciences of the<br>United States of America, 2011, 108, 12949-12954. | 7.1  | 113       |
| 41 | Isolation of single cells from murine late distal convoluted tubules and connecting tubules. FASEB<br>Journal, 2011, 25, 863.7.                                                                                                                        | 0.5  | 0         |
| 42 | Characterizing the pathway for nucleotide release in a renal epithelial cell line. FASEB Journal, 2011, 25, 1041.12.                                                                                                                                   | 0.5  | 0         |
| 43 | Colonic potassium handling. Pflugers Archiv European Journal of Physiology, 2010, 459, 645-656.                                                                                                                                                        | 2.8  | 88        |
| 44 | Adrenaline-induced colonic K+secretion is mediated by KCa1.1 (BK) channels. Journal of Physiology, 2010, 588, 1763-1777.                                                                                                                               | 2.9  | 34        |
| 45 | Escherichia coli α-Hemolysin Triggers Shrinkage of Erythrocytes via KCa3.1 and TMEM16A Channels with<br>Subsequent Phosphatidylserine Exposure. Journal of Biological Chemistry, 2010, 285, 15557-15565.                                               | 3.4  | 53        |
| 46 | Intrarenal Purinergic Signaling in the Control of Renal Tubular Transport. Annual Review of Physiology, 2010, 72, 377-393.                                                                                                                             | 13.1 | 111       |
| 47 | Vasopressin independent trafficking of aquaporinâ€⊋ by prostaglandin E2. FASEB Journal, 2010, 24, 610.3.                                                                                                                                               | 0.5  | 0         |
| 48 | α-Hemolysin from <i>Escherichia coli</i> uses endogenous amplification through P2X receptor<br>activation to induce hemolysis. Proceedings of the National Academy of Sciences of the United States<br>of America, 2009, 106, 4030-4035.               | 7.1  | 113       |
| 49 | AVP-stimulated nucleotide secretion in perfused mouse medullary thick ascending limb and cortical collecting duct. American Journal of Physiology - Renal Physiology, 2009, 297, F341-F349.                                                            | 2.7  | 29        |
| 50 | ATP release from non-excitable cells. Purinergic Signalling, 2009, 5, 433-446.                                                                                                                                                                         | 2.2  | 202       |
| 51 | Measuring Cilium-Induced Ca2+ Increases in Cultured Renal Epithelia. Methods in Cell Biology, 2009, 91, 299-313.                                                                                                                                       | 1.1  | 1         |
| 52 | The adrenalineâ€induced colonic K + secretion is conducted by the ZERO splice variant of K Ca 1.1 (BK).<br>FASEB Journal, 2009, 23, 796.21.                                                                                                            | 0.5  | 1         |
| 53 | Fluid flow sensing and triggered nucleotide release in epithelia. Journal of Physiology, 2008, 586, 2669-2669.                                                                                                                                         | 2.9  | 16        |
| 54 | Aldosterone increases K <sub>Ca</sub> 1.1 (BK) channelâ€mediated colonic K <sup>+</sup> secretion.<br>Journal of Physiology, 2008, 586, 4251-4264.                                                                                                     | 2.9  | 74        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Flow-Induced [Ca2+]i Increase Depends on Nucleotide Release and Subsequent Purinergic Signaling in the Intact Nephron. Journal of the American Society of Nephrology: JASN, 2007, 18, 2062-2070.                                | 6.1  | 108       |
| 56 | Interaction Between Na + /K + -Pump and Na + /Ca 2+ -Exchanger Modulates Intercellular<br>Communication. Circulation Research, 2007, 100, 1026-1035.                                                                            | 4.5  | 52        |
| 57 | Effects of extracellular HCO3â^' on fatigue, pHi, and K+ efflux in rat skeletal muscles. Journal of<br>Applied Physiology, 2007, 103, 494-503.                                                                                  | 2.5  | 19        |
| 58 | Aldosterone upâ€regulates K <sub>Ca</sub> 1.1 (BK) channelâ€mediated colonic K <sup>+</sup> secretion.<br>FASEB Journal, 2007, 21, .                                                                                            | 0.5  | 0         |
| 59 | Spontaneous [Ca 2+ ] i oscillations reflect nucleotide release from cultured and intact renal epithelia. FASEB Journal, 2007, 21, A1327.                                                                                        | 0.5  | 1         |
| 60 | Angiotensin II mediates downregulation of aquaporin water channels and key renal sodium<br>transporters in response to urinary tract obstruction. American Journal of Physiology - Renal<br>Physiology, 2006, 291, F1021-F1032. | 2.7  | 65        |
| 61 | A PHYSIOLOGICAL VIEW OF THE PRIMARY CILIUM. Annual Review of Physiology, 2005, 67, 515-529.                                                                                                                                     | 13.1 | 258       |
| 62 | The renal cell primary cilium functions as a flow sensor. Current Opinion in Nephrology and Hypertension, 2003, 12, 517-520.                                                                                                    | 2.0  | 236       |
| 63 | Low Chloride Stimulation of Prostaglandin E2Release and Cyclooxygenase-2 Expression in a Mouse<br>Macula Densa Cell Line. Journal of Biological Chemistry. 2000, 275, 37922-37929.                                              | 3.4  | 145       |