José Alexandre Diniz-Filho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2858492/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A colourful tropical world. Nature Ecology and Evolution, 2022, 6, 502-503.	7.8	2
2	Isolation-by-ecology in a Neotropical savanna tree. Tree Genetics and Genomes, 2022, 18, .	1.6	2
3	A Cautionary Note on Phylogenetic Signal Estimation from Imputed Databases. Evolutionary Biology, 2021, 48, 246-258.	1.1	10
4	Quantitative genetics of extreme insular dwarfing: The case of red deer on Jersey. Journal of Biogeography, 2021, 48, 1720-1730.	3.0	6
5	Too simple models may predict the island rule for the wrong reasons. Ecology Letters, 2021, 24, 2521-2523.	6.4	4
6	Profiles not metrics: the case of Brazilian universities. Anais Da Academia Brasileira De Ciencias, 2021, 93, e29290261.	0.8	8
7	Overcoming the worst of both worlds: integrating climate change and habitat loss into spatial conservation planning of genetic diversity in the Brazilian Cerrado. Biodiversity and Conservation, 2020, 29, 1555-1570.	2.6	17
8	Canopy height explains species richness in the largest clade of Neotropical lianas. Global Ecology and Biogeography, 2020, 29, 26-37.	5.8	17
9	The circular nature of recurrent life cycle events: a test comparing tropical and temperate phenology. Journal of Ecology, 2020, 108, 393-404.	4.0	28
10	Unveiling geographical gradients of species richness from scant occurrence data. Global Ecology and Biogeography, 2020, 29, 748-759.	5.8	5
11	Current climate, but also longâ€ŧerm climate changes and human impacts, determine the geographic distribution of European mammal diversity. Global Ecology and Biogeography, 2020, 29, 1758-1769.	5.8	21
12	A Major Change in Rate of Climate Niche Envelope Evolution during Hominid History. IScience, 2020, 23, 101693.	4.1	14
13	Deconstructing species richness–environment relationships in Neotropical lianas. Journal of Biogeography, 2020, 47, 2168-2180.	3.0	8
14	Macroecology and macroevolution of body size in <i>Anolis</i> lizards. Ecography, 2020, 43, 812-822.	4.5	24
15	Evolutionary Macroecology and the Geographical Patterns of Neotropical Diversification. Fascinating Life Sciences, 2020, , 85-101.	0.9	7
16	Phylogenetic niche conservatism and plant diversification in South American subtropical grasslands along multiple climatic dimensions. Genetics and Molecular Biology, 2020, 43, e20180291.	1.3	14
17	Complete chloroplast genome sequence of Caryocar brasiliense Camb. (Caryocaraceae) and comparative analysis brings new insights into the plastome evolution of Malpighiales. Genetics and Molecular Biology, 2020, 43, e20190161.	1.3	2
18	Quantitative genetics of body size evolution on islands: an individual-based simulation approach. Biology Letters, 2019, 15, 20190481.	2.3	12

José Alexandre Diniz-Filho

#	Article	IF	CITATIONS
19	The complete chloroplast genome of Stryphnodendron adstringens (Leguminosae - Caesalpinioideae): comparative analysis with related Mimosoid species. Scientific Reports, 2019, 9, 14206.	3.3	36
20	Metaâ€analyzing the likely crossâ€species responses to climate change. Ecology and Evolution, 2019, 9, 11136-11144.	1.9	10
21	A macroecological approach to evolutionary rescue and adaptation to climate change. Ecography, 2019, 42, 1124-1141.	4.5	36
22	Multiple Components of Phylogenetic Non-stationarity in the Evolution of Brain Size in Fossil Hominins. Evolutionary Biology, 2019, 46, 47-59.	1.1	11
23	Will life find a way out? Evolutionary rescue and Darwinian adaptation to climate change. Perspectives in Ecology and Conservation, 2019, 17, 117-121.	1.9	12
24	Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Scientific Reports, 2019, 9, 8523.	3.3	38
25	Geographical distribution of Stryphnodendron adstringens Mart. Coville (Fabaceae): modeling effects of climate change on past, present and future. Revista Brasileira De Botanica, 2019, 42, 53-61.	1.3	4
26	Phylogenetic and spatial analyses suggest minimum temperature as an environmental filter for turtle communities. Journal of Biogeography, 2019, 46, 671-679.	3.0	3
27	Biogeographical history constrains climatic niche diversification without adaptive forces driving evolution. Journal of Biogeography, 2019, 46, 1020-1028.	3.0	16
28	Additive effects of climate change and human hunting explain population decline and extinction in cave bears. Boreas, 2019, 48, 605-615.	2.4	11
29	Climate change will decrease the range of a keystone fish species in La Plata River Basin, South America. Hydrobiologia, 2019, 836, 1-19.	2.0	19
30	Hierarchical genetic and spatial structure among varieties and populations of Hymenaea stigonocarpa (Fabaceae) in Brazilian savannah. Tree Genetics and Genomes, 2019, 15, 1.	1.6	5
31	Geographical ecology and conservation of <i>Eugenia</i> L. (Myrtaceae) in the Brazilian Cerrado: Past, present andÂfuture. Austral Ecology, 2019, 44, 95-104.	1.5	7
32	Climatic niche evolution in turtles is characterized by phylogenetic conservatism for both aquatic and terrestrial species. Journal of Evolutionary Biology, 2019, 32, 66-75.	1.7	9
33	Drivers of Phylogenetic Assemblage Structure of the Furnariides, a Widespread Clade of Lowland Neotropical Birds. American Naturalist, 2019, 193, E41-E56.	2.1	10
34	Do traditional scientometric indicators predict social media activity on scientific knowledge? An analysis of the ecological literature. Scientometrics, 2018, 115, 1007-1015.	3.0	12
35	The well-behaved killer: Late Pleistocene humans in Eurasia were significantly associated with living megafauna only. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 500, 24-32.	2.3	4
36	Fragmentation of Neanderthals' pre-extinction distribution by climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 496, 146-154.	2.3	35

JOSé ALEXANDRE DINIZ-FILHO

#	Article	IF	CITATIONS
37	Climatic and evolutionary factors shaping geographical gradients of species richness in Anolis lizards. Biological Journal of the Linnean Society, 2018, 123, 615-627.	1.6	16
38	Geographic variation in the relationship between large-scale environmental determinants and bat species richness. Basic and Applied Ecology, 2018, 27, 1-8.	2.7	17
39	Temperature is the main correlate of the global biogeography of turtle body size. Global Ecology and Biogeography, 2018, 27, 429-438.	5.8	12
40	Analyzing communityâ€weighted trait means across environmental gradients: should phylogeny stay or should it go?. Ecology, 2018, 99, 385-398.	3.2	45
41	Reducing Wallacean shortfalls for the coralsnakes of the Micrurus lemniscatus species complex: Present and future distributions under a changing climate. PLoS ONE, 2018, 13, e0205164.	2.5	13
42	Genetic structure and chemical diversity in natural populations of Uncaria guianensis (Aubl.) J.F.Gmel. (Rubiaceae). PLoS ONE, 2018, 13, e0205667.	2.5	3
43	Ecological drivers of plant genetic diversity at the southern edge of geographical distributions: Forestal vines in a temperate region. Genetics and Molecular Biology, 2018, 41, 318-326.	1.3	8
44	Science and democracy must orientate Brazil's path to sustainability. Perspectives in Ecology and Conservation, 2018, 16, 121-124.	1.9	24
45	Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 2018, 361, .	12.6	260
46	Geographical patterns in climate and agricultural technology drive soybean productivity in Brazil. PLoS ONE, 2018, 13, e0191273.	2.5	21
47	O Hobbit da Ilha de Flores: implicações para a evolução humana. Ciência E Cultura, 2018, 70, 56-59.	0.0	1
48	Bigger kill than chill: The uneven roles of humans and climate on late Quaternary megafaunal extinctions. Quaternary International, 2017, 431, 216-222.	1.5	38
49	Global patterns of mammalian coâ€occurrence: phylogenetic and body size structure within species ranges. Journal of Biogeography, 2017, 44, 136-146.	3.0	27
50	Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A metaâ€analysis. Ecography, 2017, 40, 817-828.	4.5	165
51	Geographical patterns of phylogenetic betaâ€diversity components in terrestrial mammals. Global Ecology and Biogeography, 2017, 26, 573-583.	5.8	39
52	Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly. Methods in Ecology and Evolution, 2017, 8, 1200-1211.	5.2	81
53	Phylogeny and the prediction of tree functional diversity across novel continental settings. Global Ecology and Biogeography, 2017, 26, 553-562.	5.8	31
54	Dispersal is more important than climate in structuring turtle communities across different biogeographical realms. Journal of Biogeography, 2017, 44, 2109-2120.	3.0	14

#	Article	IF	CITATIONS
55	The impact of deforestation, urbanization, public investments, and agriculture on human welfare in the Brazilian Amazonia. Land Use Policy, 2017, 65, 135-142.	5.6	58
56	Island Rule, quantitative genetics and brain–body size evolution in <i>Homo floresiensis</i> . Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171065.	2.6	24
57	Fossil record improves biodiversity risk assessment under future climate change scenarios. Diversity and Distributions, 2017, 23, 922-933.	4.1	25
58	Stacked species distribution and macroecological models provide incongruent predictions of species richness for Drosophilidae in the Brazilian savanna. Insect Conservation and Diversity, 2017, 10, 415-424.	3.0	13
59	Passerine phenology in the largest tropical dry forest of South America: effects of climate and resource availability. Emu, 2017, 117, 78-91.	0.6	26
60	The geographical diversification of Furnariides: the role of forest versus open habitats in driving species richness gradients. Journal of Biogeography, 2017, 44, 1683-1693.	3.0	23
61	The roles of geographic distance and socioeconomic factors on international collaboration among ecologists. Scientometrics, 2017, 113, 1539-1550.	3.0	36
62	Heterochromatic and cytomolecular diversification in the Caesalpinia group (Leguminosae): Relationships between phylogenetic and cytogeographical data. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 29, 51-63.	2.7	30
63	Geographical diversification and the effect of model and data inadequacies: the bat diversity gradient as a case study. Biological Journal of the Linnean Society, 2017, 121, 894-906.	1.6	15
64	Time and environment explain the current richness distribution of nonâ€marine turtles worldwide. Ecography, 2017, 40, 1402-1411.	4.5	20
65	Integrating selection, niche, and diversification into a hierarchical conceptual framework. Organisms Diversity and Evolution, 2017, 17, 1-10.	1.6	8
66	A comparison of hull methods for estimating species ranges and richness maps. Plant Ecology and Diversity, 2017, 10, 389-401.	2.4	34
67	Using a multi-objective artificial immune system approach for biodiversity conservation. , 2017, , .		0
68	Genetic and chemical diversity of Uncaria tomentosa (Willd. ex. Schult.) DC. in the Brazilian Amazon. PLoS ONE, 2017, 12, e0177103.	2.5	11
69	Two sides of a coin: Effects of climate change on the native and non-native distribution of Colossoma macropomum in South America. PLoS ONE, 2017, 12, e0179684.	2.5	19
70	Diversity gradients of Neotropical freshwater fish: evidence of multiple underlying factors in humanâ€modified systems. Journal of Biogeography, 2016, 43, 1679-1689.	3.0	25
71	Invasion risk of the pond slider turtle is underestimated when niche expansion occurs. Freshwater Biology, 2016, 61, 1119-1127.	2.4	22
72	Geographically weighted regression as a generalized Wombling to detect barriers to gene flow. Genetica, 2016, 144, 425-433.	1.1	6

#	Article	IF	CITATIONS
73	Spatial autocorrelation analysis and ecological niche modelling allows inference of range dynamics driving the population genetic structure of a Neotropical savanna tree. Journal of Biogeography, 2016, 43, 167-177.	3.0	25
74	Ecological opportunities, habitat, and past climatic fluctuations influenced the diversification of modern turtles. Molecular Phylogenetics and Evolution, 2016, 101, 352-358.	2.7	25
75	Could refuge theory and rivers acting as barriers explain the genetic variability distribution in the Atlantic Forest?. Molecular Phylogenetics and Evolution, 2016, 101, 242-251.	2.7	49
76	Exploring intraspecific climatic niche conservatism to better understand species invasion: the case of Trachemys dorbigni (Testudines, Emydidae). Hydrobiologia, 2016, 779, 127-134.	2.0	11
77	Drivers of academic performance in a Brazilian university under a government-restructuring program. Journal of Informetrics, 2016, 10, 151-161.	2.9	15
78	Phylogenetic fields through time: temporal dynamics of geographical co-occurrence and phylogenetic structure within species ranges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150220.	4.0	14
79	Tendências da literatura cientÃfica sobre genética de populações de plantas do Cerrado. Hoehnea (revista), 2016, 43, 461-477.	0.2	7
80	Exhaustive search for conservation networks of populations representing genetic diversity. Genetics and Molecular Research, 2016, 15, .	0.2	7
81	Phylogenetic eigenvectors and nonstationarity in the evolution of theropod dinosaur skulls. Journal of Evolutionary Biology, 2015, 28, 1410-1416.	1.7	18
82	The best of both worlds: Phylogenetic eigenvector regression and mapping. Genetics and Molecular Biology, 2015, 38, 396-400.	1.3	13
83	Phylogenetic analysis in Myrcia section Aulomyrcia and inferences on plant diversity in the Atlantic rainforest. Annals of Botany, 2015, 115, 747-761.	2.9	53
84	A Multi-objective Optimization Approach Associated to Climate Change Analysis to Improve Systematic Conservation Planning. Lecture Notes in Computer Science, 2015, , 458-472.	1.3	2
85	Conservation biogeography of the Cerrado's wild edible plants under climate change: Linking biotic stability with agricultural expansion. American Journal of Botany, 2015, 102, 870-877.	1.7	23
86	Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 523-549.	8.3	856
87	Multi-objective optimization for plant germplasm collection conservation of genetic resources based on molecular variability. Tree Genetics and Genomes, 2015, 11, 1.	1.6	12
88	Correlation between genetic diversity and environmental suitability: taking uncertainty from ecological niche models into account. Molecular Ecology Resources, 2015, 15, 1059-1066.	4.8	30
89	Environmental drivers of diversity in Subtropical Highland Grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 360-368.	2.7	47
90	Clade-specific responses regulate phenological patterns in Neotropical Myrtaceae. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 476-490.	2.7	27

JOSé ALEXANDRE DINIZ-FILHO

#	Article	IF	CITATIONS
91	Space and time: The two dimensions of Artiodactyla body mass evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 437, 18-25.	2.3	21
92	Using Multi-Objective Artificial Immune Systems to Find Core Collections Based on Molecular Markers. , 2015, , .		1
93	Multi-model inference in comparative phylogeography: an integrative approach based on multiple lines of evidence. Frontiers in Genetics, 2015, 6, 31.	2.3	24
94	Phylogenetic uncertainty revisited: Implications for ecological analyses. Evolution; International Journal of Organic Evolution, 2015, 69, 1301-1312.	2.3	98
95	Range-wide genetic differentiation of Eugenia dysenterica (Myrtaceae) populations in Brazilian Cerrado. Biochemical Systematics and Ecology, 2015, 59, 288-296.	1.3	19
96	On the need for phylogenetic †̃corrections' in functional trait-based approaches. Folia Geobotanica, 2015, 50, 349-357.	0.9	84
97	Patterns of genetic variability in central and peripheral populations of Dipteryx alata (Fabaceae) in the Brazilian Cerrado. Plant Systematics and Evolution, 2015, 301, 1315-1324.	0.9	18
98	Differential effects of temperature change and human impact on European Late Quaternary mammalian extinctions. Global Change Biology, 2015, 21, 1475-1481.	9.5	18
99	Disentangling the Phylogenetic and Ecological Components of Spider Phenotypic Variation. PLoS ONE, 2014, 9, e89314.	2.5	18
100	Geographical genetics of Pseudoplatystoma punctifer (Castelnau, 1855) (Siluriformes, Pimelodidae) in the Amazon Basin. Genetics and Molecular Research, 2014, 13, 3656-3666.	0.2	17
101	Multi-objective optimization applied to systematic conservation planning and spatial conservation priorities under climate change. , 2014, , .		2
102	Phylogenetic eigenvector regression in paleobiology. Revista Brasileira De Paleontologia, 2014, 17, 105-122.	0.4	6
103	Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of <scp>N</scp> orth <scp>A</scp> merican forests. Journal of Biogeography, 2014, 41, 23-38.	3.0	126
104	Constraint envelope analyses of macroecological patterns reveal climatic effects on Pleistocene mammal extinctions. Quaternary Research, 2014, 82, 260-269.	1.7	8
105	Global patterns of phylogenetic beta diversity components in bats. Journal of Biogeography, 2014, 41, 762-772.	3.0	24
106	Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Global Ecology and Biogeography, 2014, 23, 836-847.	5.8	110
107	Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography, 2014, 37, 637-647.	4.5	64
108	Elucidating the global elapid (Squamata) richness pattern under metabolic theory of ecology. Acta Oecologica, 2014, 56, 41-46.	1.1	3

#	Article	IF	CITATIONS
109	Globalizing Conservation Efforts to Save Species and Enhance Food Production. BioScience, 2014, 64, 539-545.	4.9	33
110	Climatic niche at physiological and macroecological scales: the thermal tolerance–geographical range interface and niche dimensionality. Global Ecology and Biogeography, 2014, 23, 446-456.	5.8	65
111	Pattern-oriented modelling of population genetic structure. Biological Journal of the Linnean Society, 2014, 113, 1152-1161.	1.6	7
112	The potential for large-scale wildlife corridors between protected areas in Brazil using the jaguar as a model species. Landscape Ecology, 2014, 29, 1213-1223.	4.2	30
113	Infraspecific classification reï¬,ects genetic differentiation in the widespread Petunia axillaris complex: A comparison among morphological, ecological, and genetic patterns of geographic variation. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 75-82.	2.7	24
114	Phenotypic correlates of potential range size and range filling in European trees. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 219-227.	2.7	39
115	Obstinate Overkill in Tasmania? The closest gaps do not probabilistically support human involvement in megafaunal extinctions. Earth-Science Reviews, 2014, 135, 59-64.	9.1	10
116	Exploring patterns in macroecological traits using sequential phylogenetic eigenvector regression. Ecosistemas, 2014, 23, 21-26.	0.4	7
117	Darwinian shortfalls in biodiversity conservation. Trends in Ecology and Evolution, 2013, 28, 689-695.	8.7	185
118	Climate and humans set the place and time of Proboscidean extinction in late Quaternary of South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392, 546-556.	2.3	25
119	A new eigenfunction spatial analysis describing population genetic structure. Genetica, 2013, 141, 479-489.	1.1	6
120	Insistence on narrative reviews or preference for overkill hypothesis? Re-analyses show no evidence against Lima-Ribeiro and Diniz-Filho's conclusions. Quaternary International, 2013, 308-309, 278-281.	1.5	3
121	Citations: Ethical ways to grow impact. Nature, 2013, 501, 492-492.	27.8	2
122	A straightforward conceptual approach for evaluating spatial conservation priorities under climate change. Biodiversity and Conservation, 2013, 22, 483-495.	2.6	60
123	Geographical patterns of <scp>T</scp> riatominae (<scp>H</scp> eteroptera: <scp>R</scp> eduviidae) richness and distribution in the <scp>W</scp> estern <scp>H</scp> emisphere. Insect Conservation and Diversity, 2013, 6, 704-714.	3.0	18
124	Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. Journal of Biogeography, 2013, 40, 345-358.	3.0	116
125	Environmental steepness, tolerance gradient, and ecogeographical rules in glassfrogs (Anura:) Tj ETQq1 1 0.7843	14 rgBT /(1.6	Overlock 10
196	Phylogenetic fields of species: cross-species patterns of phylogenetic structure and geographical	26	52

Phylogenetic fields of species: cross-species patterns of phylogenetic structure and geograph coexistence. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122570. 126

2.6 52

#	Article	IF	CITATIONS
127	American megafaunal extinctions and human arrival: Improved evaluation using a meta-analytical approach. Quaternary International, 2013, 299, 38-52.	1.5	60
128	Nonstationary effects of productivity, seasonality, and historical climate changes on global amphibian diversity. Ecography, 2013, 36, 104-113.	4.5	59
129	Stability of Brazilian Seasonally Dry Forests under Climate Change: Inferences for Long-Term Conservation. American Journal of Plant Sciences, 2013, 04, 792-805.	0.8	43
130	Global agricultural expansion and carnivore conservation biogeography. Biological Conservation, 2013, 165, 162-170.	4.1	39
131	Mantel test in population genetics. Genetics and Molecular Biology, 2013, 36, 475-485.	1.3	346
132	Evolutionary macroecology. Frontiers of Biogeography, 2013, 5, .	1.8	2
133	Effects of global climate changes on geographical distribution patterns of economically important plant species in cerrado. Revista Arvore, 2013, 37, 267-274.	0.5	17
134	Evolutionary macroecology. Frontiers of Biogeography, 2013, 5, .	1.8	7
135	Human arrival scenarios have a strong influence on interpretations of the late Quaternary extinctions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2409-10; author reply E2411.	7.1	8
136	Thirty-five years of spatial autocorrelation analysis in population genetics: an essay in honour of Robert Sokal (1926-2012). Biological Journal of the Linnean Society, 2012, 107, 721-736.	1.6	15
137	A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a <scp>N</scp> eotropical seasonally dry forest tree species. Molecular Ecology, 2012, 21, 5845-5863.	3.9	94
138	Using phylogenetic trees to test for character displacement: a model and an example from a desert mammal community. Ecology, 2012, 93, S44.	3.2	23
139	Conserving the Brazilian semiarid (Caatinga) biome under climate change. Biodiversity and Conservation, 2012, 21, 2913-2926.	2.6	70
140	Geographical patterns of turnover and nestedness-resultant components of allelic diversity among populations. Genetica, 2012, 140, 189-195.	1.1	11
141	Can species distribution modelling provide estimates of population densities? A case study with jaguars in the Neotropics. Diversity and Distributions, 2012, 18, 615-627.	4.1	110
142	Extreme deconstruction supports niche conservatism driving New World bird diversity. Acta Oecologica, 2012, 43, 16-21.	1.1	4
143	Obsession with quantity: a view from the south. Trends in Ecology and Evolution, 2012, 27, 585.	8.7	18
144	Phylogenetic Analyses: Comparing Species to Infer Adaptations and Physiological Mechanisms. , 2012, 2,		96

144 639-674.

José Alexandre Diniz-Filho

#	Article	IF	CITATIONS
145	Equilibrium of Global Amphibian Species Distributions with Climate. PLoS ONE, 2012, 7, e34420.	2.5	52
146	Metabolic Theory of Ecology and diversity of continental zooplankton in Brazil. Acta Scientiarum - Biological Sciences, 2012, 34, .	0.3	0
147	A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models. Genetics and Molecular Biology, 2012, 35, 673-679.	1.3	47
148	Geographical patterns and partition of turnover and richness components of beta-diversity in faunas from Tocantins river valley. Brazilian Journal of Biology, 2012, 72, 497-504.	0.9	12
149	Planning for optimal conservation of geographical genetic variability within species. Conservation Genetics, 2012, 13, 1085-1093.	1.5	56
150	Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 2012, 21, 191-197.	5.8	175
151	Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos, 2012, 121, 201-210.	2.7	89
152	Integrating biogeographical processes and local community assembly. Journal of Biogeography, 2012, 39, 627-628.	3.0	30
153	EXPLORING PATTERNS OF INTERSPECIFIC VARIATION IN QUANTITATIVE TRAITS USING SEQUENTIAL PHYLOGENETIC EIGENVECTOR REGRESSIONS. Evolution; International Journal of Organic Evolution, 2012, 66, 1079-1090.	2.3	70
154	On the selection of phylogenetic eigenvectors for ecological analyses. Ecography, 2012, 35, 239-249.	4.5	107
155	Integrating phylogeny, environment and space to explore variation in macroecological traits of Viperidae and Elapidae (Squamata: Serpentes). Journal of Zoological Systematics and Evolutionary Research, 2012, 50, 202-209.	1.4	4
156	Modelando a distribuição geográfica das espécies no passado: uma abordagem promissora em Paleoecologia. Revista Brasileira De Paleontologia, 2012, 15, 371-385.	0.4	14
157	Geographic shifts in climatically suitable areas and loss of genetic variability in Dipteryx alata ("Baruâ€) Tj ETC	2q1 1 0.78 0.2	34314 rgBT /(
158	Two years later: Natureza & Conservação and its impact. Natureza A Conservacao, 2012, 10, 1-2.	2.5	5
159	Potential suitable areas of giant ground sloths dropped before its extinction in South America: the evidences from bioclimatic envelope modeling. Natureza A Conservacao, 2012, 10, 145-151.	2.5	16
160	Areas of climate stability of species ranges in the Brazilian Cerrado: disentangling uncertainties through time. Natureza A Conservacao, 2012, 10, 152-159.	2.5	93
161	Agricultural expansion and the fate of global conservation priorities. Biodiversity and Conservation, 2011, 20, 2445-2459.	2.6	72
162	Relationship between the genetic structure of the Andean toad Rhinella spinulosa (Anura: Bufonidae) and the northern Chile landscape (21°- 24° S). Revista Chilena De Historia Natural, 2011, 84, 391-406.	1.2	2

#	Article	IF	CITATIONS
163	Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 2011, 14, 741-748.	6.4	183
164	The role of diet and temperature in shaping cranial diversification of South American human populations: an approach based on spatial regression and divergence rate tests. Journal of Biogeography, 2011, 38, 148-163.	3.0	42
165	Climatic niche conservatism and the evolutionary dynamics in species range boundaries: global congruence across mammals and amphibians. Journal of Biogeography, 2011, 38, 2237-2247.	3.0	75
166	Eigenvector estimation of phylogenetic and functional diversity. Functional Ecology, 2011, 25, 735-744.	3.6	28
167	Evaluating environmental and geometrical constraints on endemic vertebrates of the semiarid Caatinga (Brazil). Basic and Applied Ecology, 2011, 12, 664-673.	2.7	3
168	Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2536-2544.	4.0	314
169	A geographical genetics framework for inferring homing reproductive behavior in fishes. Genetica, 2011, 139, 243-253.	1.1	12
170	Range shift and loss of genetic diversity under climate change in Caryocar brasiliense, a Neotropical tree species. Tree Genetics and Genomes, 2011, 7, 1237-1247.	1.6	31
171	Geographical Patterns in Biodiversity: Towards an Integration of Concepts and Methods from Genes to Species Diversity. Natureza A Conservacao, 2011, 9, 179-187.	2.5	13
172	Agricultural Expansion Can Menace Brazilian Protected Areas During the 21st Century. Natureza A Conservacao, 2011, 9, 208-213.	2.5	15
173	Deviations from predictions of the metabolic theory of ecology can be explained by violations of assumptions. Ecology, 2010, 91, 3729-3738.	3.2	14
174	Invasive and flexible: niche shift in the drosophilid Zaprionus indianus (Insecta, Diptera). Biological Invasions, 2010, 12, 1231-1241.	2.4	71
175	Weak evidence for determinants of citation frequency in ecological articles. Scientometrics, 2010, 85, 1-12.	3.0	54
176	Alternatives to the partial Mantel test in the study of environmental factors shaping human morphological variation. Journal of Human Evolution, 2010, 59, 698-703.	2.6	9
177	Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams?. Oikos, 2010, 119, 129-137.	2.7	141
178	SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography, 2010, 33, 46-50.	4.5	1,025
179	Crossâ€species and assemblageâ€based approaches to Bergmann's rule and the biogeography of body size in <i>Plethodon</i> salamanders of eastern North America. Ecography, 2010, 33, 362-368.	4.5	45
180	The shared influence of phylogeny and ecology on the reproductive patterns of Myrteae (Myrtaceae). Journal of Ecology, 2010, 98, 1409-1421.	4.0	84

#	Article	IF	CITATIONS
181	Ensemble forecasting shifts in climatically suitable areas for <i>Tropidacris cristata</i> (Orthoptera:) Tj ETQq1	1 0.784314 3.0	∔rgβT /Over <mark>l</mark> ⊙
182	Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conservation and Diversity, 2010, 3, 172-179.	3.0	129
183	Hidden patterns of phylogenetic nonâ€stationarity overwhelm comparative analyses of niche conservatism and divergence. Global Ecology and Biogeography, 2010, 19, 916-926.	5.8	58
184	Phylogenetic autocorrelation and heritability of geographic range size, shape and position of fiddler crabs, genus <i>Uca</i> (Crustacea, Decapoda). Journal of Zoological Systematics and Evolutionary Research, 2010, 48, 102-108.	1.4	11
185	Spatial regression techniques for interâ€population data: studying the relationships between morphological and environmental variation. Journal of Evolutionary Biology, 2010, 23, 237-248.	1.7	26
186	Combining multiple models to predict the geographical distribution of the Baru tree (Dipteryx alata) Tj ETQq0	0 0 rgBT /O	verlock 10 Tf . 16
187	The three phases of the ensemble forecasting of niche models: geographic range and shifts in climatically suitable areas of Utetheisa ornatrix (Lepidoptera, Arctiidae). Revista Brasileira De Entomologia, 2010, 54, 339-349.	0.4	29
188	How many studies are necessary to compare niche-based models for geographic distributions? Inductive reasoning may fail at the end. Brazilian Journal of Biology, 2010, 70, 263-269.	0.9	29
189	Global literature of fiddler crabs, genus Uca (Decapoda, Ocypodidae): trends and future directions. Iheringia - Serie Zoologia, 2010, 100, 463-468.	0.5	19
190	Ecological and evolutionary factors in dental morphological diversification among modern human populations from southern South America. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1107-1112.	2.6	15
191	Spatial patterns of terrestrial vertebrates richness in Brazilian semiarid, Northeastern Brazil: Selecting hypotheses and revealing constraints. Journal of Arid Environments, 2010, 74, 1418-1426.	2.4	23
192	Climate stability and the current patterns of terrestrial vertebrate species richness on the Brazilian Cerrado. Quaternary International, 2010, 222, 230-236.	1.5	2
193	GRADIENTES DE DIVERSIDADE E A TEORIA METABÓLICA DA ECOLOGIA. Oecologia Australis, 2010, 14, 490-503.	0.2	4
194	Conservation Science in Brazil: Challenges for the 21st Century. Natureza A Conservacao, 2010, 08, 1-2.	2.5	9
195	Predicting Patterns of Beta Diversity in Terrestrial Vertebrates Using Physiographic Classifications in the Brazilian Cerrado. Natureza A Conservacao, 2010, 08, 127-132.	2.5	5
196	Modeling body size evolution in Felidae under alternative phylogenetic hypotheses. Genetics and Molecular Biology, 2009, 32, 170-176.	1.3	9
197	A review of techniques for spatial modeling in geographical, conservation and landscape genetics. Genetics and Molecular Biology, 2009, 32, 203-211.	1.3	60
198	Distribuição geográfica potencial de espécies americanas do caranguejo "violinista" (Uca spp.) (Crustacea, Decapoda) com base em modelagem de nicho ecológico. Iheringia - Serie Zoologia, 2009, 99, 92-98.	0.5	9

#	Article	IF	CITATIONS
199	The climate envelope may not be empty. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E47-E47.	7.1	19
200	Global richness patterns of venomous snakes reveal contrasting influences of ecology and history in two different clades. Oecologia, 2009, 159, 617-626.	2.0	27
201	Genetic analysis of a local population of Oryza glumaepatula using SSR markers: implications for management and conservation programs. Genetica, 2009, 137, 221-231.	1.1	11
202	Niche modelling and landscape genetics of Caryocar brasiliense ("Pequi―tree: Caryocaraceae) in Brazilian Cerrado: an integrative approach for evaluating central–peripheral population patterns. Tree Genetics and Genomes, 2009, 5, 617-627.	1.6	46
203	Spatial speciesâ€richness gradients across scales: a metaâ€analysis. Journal of Biogeography, 2009, 36, 132-147.	3.0	573
204	Climate history, human impacts and global body size of Carnivora (Mammalia: Eutheria) at multiple evolutionary scales. Journal of Biogeography, 2009, 36, 2222-2236.	3.0	69
205	Environmental drivers of betaâ€diversity patterns in Newâ€World birds and mammals. Ecography, 2009, 32, 226-236.	4.5	177
206	Geographic body size gradients in tropical regions: water deficit and anuran body size in the Brazilian Cerrado. Ecography, 2009, 32, 581-590.	4.5	74
207	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	4.5	231
208	Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography, 2009, 32, 897-906.	4.5	494
209	Richness patterns, species distributions and the principle of extreme deconstruction. Global Ecology and Biogeography, 2009, 18, 123-136.	5.8	49
210	Global conservation strategies for two clades of snakes: combining taxonâ€specific goals with general prioritization schemes. Diversity and Distributions, 2009, 15, 841-851.	4.1	8
211	Spatial patterns of species richness in New World coral snakes and the metabolic theory of ecology. Acta Oecologica, 2009, 35, 163-173.	1.1	30
212	Conservation biogeography of mammals in the Cerrado biome under the unified theory of macroecology. Acta Oecologica, 2009, 35, 630-638.	1.1	10
213	Integrating Economic Costs and Biological Traits into Global Conservation Priorities for Carnivores. PLoS ONE, 2009, 4, e6807.	2.5	39
214	Agriculture, habitat loss and spatial patterns of human occupation in a biodiversity hotspot. Scientia Agricola, 2009, 66, 764-771.	1.2	23
215	Macroecologia, biogeografia e áreas prioritárias para conservação no cerrado. Oecologia Brasiliensis, 2009, 13, 470-497.	0.5	24
216	Partitioning phylogenetic and adaptive components of the geographical bodyâ€size pattern of New World birds. Global Ecology and Biogeography, 2008, 17, 100-110.	5.8	30

#	Article	IF	CITATIONS
217	Landscape conservation genetics of Dipteryx alata ("baru―tree: Fabaceae) from Cerrado region of central Brazil. Genetica, 2008, 132, 9-19.	1.1	37
218	Biodiversity surrogate groups and conservation priority areas: birds of the Brazilian Cerrado. Diversity and Distributions, 2008, 14, 78-86.	4.1	25
219	Conservation of Neotropical carnivores under different prioritization scenarios: mapping species traits to minimize conservation conflicts. Diversity and Distributions, 2008, 14, 949-960.	4.1	36
220	Spatial congruence between biotic history and species richness of Muscidae (Diptera, Insecta) in the Andean and Neotropical regions. Journal of Zoological Systematics and Evolutionary Research, 2008, 46, 374-380.	1.4	12
221	Model selection and information theory in geographical ecology. Global Ecology and Biogeography, 2008, 17, 479-488.	5.8	183
222	Bergmann's rule, natural selection and the end of the Panglossian paradigm in ecogeographical analyses. Journal of Biogeography, 2008, 35, 577-578.	3.0	5
223	Mapping the evolutionary twilight zone: molecular markers, populations and geography. Journal of Biogeography, 2008, 35, 753-763.	3.0	61
224	Spatial analysis improves species distribution modelling during range expansion. Biology Letters, 2008, 4, 577-580.	2.3	141
225	Habitat use and deconstruction of richness patterns in Cerrado birds. Acta Oecologica, 2008, 33, 97-104.	1.1	22
226	Quaternary climate changes explain diversity among reptiles and amphibians. Ecography, 2008, 31, 8-15.	4.5	345
227	Conservation planning: a macroecological approach using the endemic terrestrial vertebrates of the Brazilian Cerrado. Oryx, 2008, 42, 567.	1.0	25
228	Morphometric and genetic differentiation among populations of Eupemphix nattereri (Amphibia,) Tj ETQq0 0 0 rg	gBT /Overl	ock 10 Tf 50
229	Extinction of mammalian populations in conservation units of the Brazilian Cerrado by inbreeding depression in stochastic environments. Genetics and Molecular Biology, 2008, 31, 800-803.	1.3	3
230	Autoregressive modelling of species richness in the Brazilian Cerrado. Brazilian Journal of Biology, 2008, 68, 233-240.	0.9	8
231	Escolha de áreas prioritárias de conservação de anfÃbios anuros do Cerrado através de um modelo de populações centrais-periféricas. Iheringia - Serie Zoologia, 2008, 98, 200-204.	0.5	2
232	Distribuição espacial da variabilidade genética intrapopulacional de Dipteryx alata. Pesquisa Agropecuaria Brasileira, 2008, 43, 1151-1158.	0.9	15
233	Padrões de autocorrelação espacial de Ãndices de vegetação MODIS no bioma cerrado. Revista Arvore, 2008, 32, 279-290.	0.5	9
234	Selecting priority areas to conserve Psittacines in the Brazilian cerrado: minimizing human–conservation conflicts. Bird Conservation International, 2007, 17, 13-22.	1.3	10

#	Article	IF	CITATIONS
235	Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann's rule in European Carnivora. Ecography, 2007, 30, 598-608.	4.5	72
236	Human development and biodiversity conservation in Brazilian Cerrado. Applied Geography, 2007, 27, 14-27.	3.7	33
237	Landscape genetics of Physalaemus cuvieri in Brazilian Cerrado: Correspondence between population structure and patterns of human occupation and habitat loss. Biological Conservation, 2007, 139, 37-46.	4.1	43
238	Climate, Niche Conservatism, and the Global Bird Diversity Gradient. American Naturalist, 2007, 170, S16-S27.	2.1	226
239	Species Richness and Evolutionary Niche Dynamics: A Spatial Pattern–Oriented Simulation Experiment. American Naturalist, 2007, 170, 602-616.	2.1	147
240	Are spatial regression methods a panacea or a Pandora's box? A reply to Beale et al. (2007). Ecography, 2007, 30, 848-851.	4.5	27
241	METABOLIC THEORY AND DIVERSITY GRADIENTS: WHERE DO WE GO FROM HERE?. Ecology, 2007, 88, 1898-1902.	3.2	47
242	A GLOBAL EVALUATION OF METABOLIC THEORY AS AN EXPLANATION FOR TERRESTRIAL SPECIES RICHNESS GRADIENTS. Ecology, 2007, 88, 1877-1888.	3.2	139
243	Macroevolutionary dynamics in environmental space and the latitudinal diversity gradient in New World birds. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 43-52.	2.6	43
244	Population structure of Eupemphix nattereri (Amphibia, Anura, Leiuperidae) from Central Brazil. Genetics and Molecular Biology, 2007, 30, 1161-1168.	1.3	1
245	Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann's rule in European Carnivora. Ecography, 2007, 30, 598-608.	4.5	14
246	Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography, 2007, 30, 375-384.	4.5	186
247	Non-stationarity, diversity gradients and the metabolic theory of ecology. Global Ecology and Biogeography, 2007, 16, 820-822.	5.8	45
248	Macroecology, global change and the shadow of forgotten ancestors. Global Ecology and Biogeography, 2007, 17, 070909153804001-???.	5.8	36
249	Conservation biogeography of anurans in Brazilian Cerrado. Biodiversity and Conservation, 2007, 16, 997-1008.	2.6	33
250	Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography, 2007, 30, 375-384.	4.5	10
251	Extinction of canid populations by inbreeding depression under stochastic environments in Southwestern GoiÃjs State: a simulation study. Genetics and Molecular Biology, 2007, 30, 121-126.	1.3	4

Estimating potential geographic ranges of armadillos (Xenarthra, Dasypodidae) in Brazil under niche-based models / Estimation de la distribution géographique potentielle des tatous (Xenarthra,) Tj ETQq0 0 00;gBT /Oværlock 10 Tf

#	Article	IF	CITATIONS
253	Anuran species richness, complementarity and conservation conflicts in Brazilian Cerrado. Acta Oecologica, 2006, 29, 9-15.	1.1	59
254	Conservation biogeography of anurans in Brazilian Cerrado. Topics in Biodiversity and Conservation, 2006, , 171-182.	1.0	0
255	Paternity testing and behavioral ecology: a case study of jaguars (Panthera onca) in Emas National Park, Central Brazil. Genetics and Molecular Biology, 2006, 29, 735-740.	1.3	21
256	Prevalência de talassemias e hemoglobinas variantes no estado de Goiás, Brasil. Jornal Brasileiro De Patologia E Medicina Laboratorial, 2006, 42, 425.	0.3	5
257	Optimization procedures for establishing reserve networks for biodiversity conservation taking into account population genetic structure. Genetics and Molecular Biology, 2006, 29, 207-214.	1.3	30
258	Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Diversity and Distributions, 2006, 12, 475-482.	4.1	245
259	Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography, 2006, 15, 321-327.	5.8	540
260	Beyond Rapoport's rule: evaluating range size patterns of New World birds in a two-dimensional framework. Global Ecology and Biogeography, 2006, 15, 461-469.	5.8	98
261	Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. Journal of Biogeography, 2006, 33, 770-780.	3.0	205
262	Modern processes drive macroecological patterns in North American avifauna. Journal of Biogeography, 2006, 33, 1153-1154.	3.0	1
263	Factors influencing changes in trait correlations across species after using phylogenetic independent contrasts. Evolutionary Ecology, 2006, 20, 591-602.	1.2	29
264	RAPD variation and population genetic structure of Physalaemus cuvieri (Anura: Leptodactylidae) in Central Brazil. Genetica, 2006, 128, 323-332.	1.1	10
265	Beyond Rapoport's rule: evaluating range size patterns of New World birds in a two-dimensional framework. Global Ecology and Biogeography, 2006, 15, 461-469.	5.8	1
266	Lomborg and the Litany of Biodiversity Crisis: What the Peerâ€Reviewed Literature Says. Conservation Biology, 2005, 19, 1301-1305.	4.7	72
267	Neutral community dynamics, the mid-domain effect and spatial patterns in species richness. Ecology Letters, 2005, 8, 783-790.	6.4	53
268	Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecology and Biogeography, 2005, 14, 177-185.	5.8	288
269	Macroecological correlates and spatial patterns of anuran description dates in the Brazilian Cerrado. Global Ecology and Biogeography, 2005, 14, 469-477.	5.8	79
270	A new taste for old fine wines. Global Ecology and Biogeography, 2005, 14, 602-603.	5.8	0

#	Article	IF	CITATIONS
271	Water links the historical and contemporary components of the Australian bird diversity gradient. Journal of Biogeography, 2005, 32, 1035-1042.	3.0	148
272	A nice step towards the final frontier. Journal of Biogeography, 2005, 32, 1287-1288.	3.0	0
273	An evolutionary tolerance model explaining spatial patterns in species richness under environmental gradients and geometric constraints. Ecography, 2005, 28, 253-263.	4.5	58
274	The impact of Felsenstein's "Phylogenies and the comparative method―on evolutionary biology. Scientometrics, 2005, 62, 53-66.	3.0	22
275	Macroecology, geographic range size–body size relationship and minimum viable population analysis for new world carnivora. Acta Oecologica, 2005, 27, 25-30.	1.1	34
276	The Midâ€Domain Effect and Diversity Gradients: Is There Anything to Learn?. American Naturalist, 2005, 166, E140-E143.	2.1	81
277	Multiple Mantel tests and isolation-by-distance, taking into account long-term historical divergence. Genetics and Molecular Research, 2005, 4, 742-8.	0.2	30
278	Macroecologia de carnÃvoros do Novo Mundo (Mammalia): envelopes de restrição e análise de padrões filogenéticos. Iheringia - Serie Zoologia, 2004, 94, 155-161.	0.5	0
279	Phylogenetic autocorrelation and evolutionary diversity of Carnivora (Mammalia) in Conservation Units of the New World. Genetics and Molecular Biology, 2004, 27, 511-516.	1.3	20
280	Anurans from a local assemblage in Central Brazil: linking local processes with macroecological patterns. Brazilian Journal of Biology, 2004, 64, 41-52.	0.9	11
281	Spatial patterns in species richness and priority areas for conservation of anurans in the Cerrado region, Central Brazil. Amphibia - Reptilia, 2004, 25, 63-75.	0.5	42
282	Sensitivity of macroecological patterns of South American parrots to differences in data sources. Global Ecology and Biogeography, 2004, 13, 193-198.	5.8	18
283	Macroecology and the hierarchical expansion of evolutionary theory. Global Ecology and Biogeography, 2004, 13, 1-5.	5.8	24
284	Macroecological explanations for differences in species richness gradients: a canonical analysis of South American birds. Journal of Biogeography, 2004, 31, 1819-1827.	3.0	31
285	Phylogenetic Diversity and Conservation Priorities under Distinct Models of Phenotypic Evolution. Conservation Biology, 2004, 18, 698-704.	4.7	46
286	†Latitude' and geographic patterns in species richness. Ecography, 2004, 27, 268-272.	4.5	191
287	Phylogenetic Autocorrelation Analysis of Extinction Risks and the Loss of Evolutionary History in Felidae (Carnivora: Mammalia). Evolutionary Ecology, 2004, 18, 273-282.	1.2	11
288	A test of multiple hypotheses for the species richness gradient of South American owls. Oecologia, 2004, 140, 633-638.	2.0	32

#	Article	IF	CITATIONS
289	Niche separation between the maned wolf (Chrysocyon brachyurus), the crab-eating fox (Dusicyon) Tj ETQq1 1 C).784314 1.7	rgBT /Overlo 146
290	Genetic diversity and population structure of Eugenia dysenterica DC. (``cagaiteira'' – Myrtaceae) in Central Brazil: Spatial analysis and implications for conservation and management. Conservation Genetics, 2003, 4, 685-695.	1.5	35
291	Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography, 2003, 12, 53-64.	5.8	874
292	SHAPE DISTANCES IN GENERAL LINEAR MODELS: ARE THEY REALLY AT ODDS WITH THE GOALS OF MORPHOMETRICS? A REPLY TO KLINGENBERG. Evolution; International Journal of Organic Evolution, 2003, 57, 196-199.	2.3	12
293	PRODUCTIVITY AND HISTORY AS PREDICTORS OF THE LATITUDINAL DIVERSITY GRADIENT OF TERRESTRIAL BIRDS. Ecology, 2003, 84, 1608-1623.	3.2	401
294	Camera trap, line transect census and track surveys: a comparative evaluation. Biological Conservation, 2003, 114, 351-355.	4.1	447
295	Spatial patterns in species richness and the geometric constraint simulation model: a global analysis of mid-domain effect in Falconiformes. Acta Oecologica, 2003, 24, 203-207.	1.1	22
296	GEOMETRIC ESTIMATES OF HERITABILITY IN BIOLOGICAL SHAPE. Evolution; International Journal of Organic Evolution, 2002, 56, 563.	2.3	30
297	ADAPTIVE CONSTRAINTS AND THE PHYLOGENETIC COMPARATIVE METHOD: A COMPUTER SIMULATION TEST. Evolution; International Journal of Organic Evolution, 2002, 56, 1.	2.3	5
298	Hypothesis testing of genetic similarity based on RAPD data using Mantel tests and model matrices. Genetics and Molecular Biology, 2002, 25, 435-439.	1.3	12
299	Spatial Autocorrelation Analysis and the Identification of Operational Units for Conservation in Continuous Populations. Conservation Biology, 2002, 16, 924-935.	4.7	161
300	Null models and spatial patterns of species richness in South American birds of prey. Ecology Letters, 2002, 5, 47-55.	6.4	51
301	The mid-domain effect cannot explain the diversity gradient of Nearctic birds. Global Ecology and Biogeography, 2002, 11, 419-426.	5.8	91
302	GEOMETRIC ESTIMATES OF HERITABILITY IN BIOLOGICAL SHAPE. Evolution; International Journal of Organic Evolution, 2002, 56, 563-572.	2.3	80
303	Phylogenetic comparative methods and the geographic range size – body size relationship in new world terrestrial carnivora. Evolutionary Ecology, 2002, 16, 351-367.	1.2	107
304	Adaptive constraints and the phylogenetic comparative method: a computer simulation test. Evolution; International Journal of Organic Evolution, 2002, 56, 1-13.	2.3	36
305	PHYLOGENETIC AUTOCORRELATION UNDER DISTINCT EVOLUTIONARY PROCESSES. Evolution; International Journal of Organic Evolution, 2001, 55, 1104.	2.3	3

 $306 \qquad \text{Autocorrela} \tilde{A} = 0 \\ \text{Autocorrela} \tilde{A} = 0 \\ \text{Autocorrela} = 0 \\ \text{Autocorrel$

#	Article	IF	CITATIONS
307	PHYLOGENETIC AUTOCORRELATION UNDER DISTINCT EVOLUTIONARY PROCESSES. Evolution; International Journal of Organic Evolution, 2001, 55, 1104-1109.	2.3	69
308	Local and Regional Species Richness Relationships in Viperid Snake Assemblages from South America: Unsaturated Patterns at Three Different Spatial Scales. Copeia, 2000, 2000, 799-805.	1.3	13
309	Phylogenetic correlograms and the evolution of body size in South American owls (Strigiformes). Genetics and Molecular Biology, 2000, 23, 285-292.	1.3	5
310	Null expectation of spatial correlograms under a stochastic process of genetic divergence with small sample sizes. Genetics and Molecular Biology, 2000, 23, 739-743.	1.3	1
311	Spatial analysis of morphological variation in African honeybees (Apis mellifera L.) on a continental scale. Apidologie, 2000, 31, 191-204.	2.0	18
312	Spatial pattern and genetic diversity estimates are linked in stochastic models of population differentiation. Genetics and Molecular Biology, 2000, 23, 541-544.	1.3	8
313	Macroecologia de mamÃferos neotropicais com ocorrência no Cerrado. Revista Brasileira De Zoologia, 2000, 17, 973-988.	0.5	3
314	Phylogeographical autocorrelation of phenotypic evolution in honey bees (Apis mellifera L.). Heredity, 1999, 83, 671-680.	2.6	18
315	Impact of wildfires on the megafauna of Emas National Park, central Brazil. Oryx, 1999, 33, 108-114.	1.0	78
316	Phylogeographical autocorrelation of phenotypic evolution in honey bees (Apis mellifera L.). Heredity, 1999, 83, 671-680.	2.6	4
317	An Eigenvector Method for Estimating Phylogenetic Inertia. Evolution; International Journal of Organic Evolution, 1998, 52, 1247.	2.3	199
318	Honey Ants (Genus Myrmecocystus) Macroecology: Effect of Spatial Patterns on the Relationship Between Worker Body Size and Geographic Range Size. Environmental Entomology, 1998, 27, 1094-1101.	1.4	14
319	AN EIGENVECTOR METHOD FOR ESTIMATING PHYLOGENETIC INERTIA. Evolution; International Journal of Organic Evolution, 1998, 52, 1247-1262.	2.3	284
320	Hierarchical structure of genetic distances: Effects of matrix size, spatial distribution and correlation structure among gene frequencies. Genetics and Molecular Biology, 1998, 21, 233-240.	1.3	14
321	Clinal morphometric variation in Africanized honey bees under racial admixture hypothesis. Journal of Apicultural Research, 1996, 35, 104-109.	1.5	1
322	Phylogenetic autocorrelation and evolutionary constraints in worker body size of some neotropical stingless bees (Hymenoptera: Apidae). Heredity, 1996, 76, 222-228.	2.6	15
323	Assessing the relationship between multivariate community structure and environmental variables. Marine Ecology - Progress Series, 1996, 143, 303-306.	1.9	16
324	Canonical trend surface analysis of morphometric variation in Africanized honey bees from Brazil. Journal of Apicultural Research, 1995, 34, 65-72.	1.5	6

#	Article	IF	CITATIONS
325	EVOLUTION AND POPULATION STRUCTURE OF AFRICANIZED HONEY BEES IN BRAZIL: EVIDENCE FROM SPATIAL ANALYSIS OF MORPHOMETRIC DATA. Evolution; International Journal of Organic Evolution, 1995, 49, 1172-1179.	2.3	20
326	Evolution and Population Structure of Africanized Honey Bees in Brazil: Evidence from Spatial Analysis of Morphometric Data. Evolution; International Journal of Organic Evolution, 1995, 49, 1172.	2.3	10
327	Multivariate morphometrics and allometry in a polymorphic ant. Insectes Sociaux, 1994, 41, 153-163.	1.2	29
328	Space-Free Correlation between Morphometric and Climatic Data: A Multivariate Analysis of Africanized Honey Bees (Apis mellifera L.) in Brazil. Global Ecology and Biogeography Letters, 1994, 4, 195.	0.6	10
329	Geographic variation in <i>Apis cerana indica</i> F.: a spatial autocorrelation analysis of morphometric patterns. Journal of Apicultural Research, 1993, 32, 65-72.	1.5	19
330	Ecological and evolutionary components of body size: geographic variation of venomous snakes at the global scale. Biological Journal of the Linnean Society, 0, 98, 94-109.	1.6	51
331	Ecological and evolutionary factors in the morphological diversification of South American spiny rats. Biological Journal of the Linnean Society, 0, 98, 646-660.	1.6	37
332	Global expansion of COVID-19 pandemic is driven by population size and airport connections. PeerJ, 0, 8, e9708.	2.0	51
333	Why scientific information does not necessarily impact the decisions by human society. Ethnobiology and Conservation, 0, , .	0.0	1
334	Heading back into the perfect storm: increasing risks for disease emergence in Brazil?. Revista Da Sociedade Brasileira De Medicina Tropical, 0, 55, .	0.9	0