Per Sunnerhagen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2858438/publications.pdf

Version: 2024-02-01

95 papers 3,581 citations

30 h-index 57 g-index

100 all docs

 $\begin{array}{c} 100 \\ \\ \text{docs citations} \end{array}$

100 times ranked 5175 citing authors

#	Article	IF	CITATIONS
1	Global SLAM-seq for accurate mRNA decay determination and identification of NMD targets. Rna, 2022, 28, 905-915.	3.5	9
2	Post-transcriptional regulation during stress. FEMS Yeast Research, 2022, 22, .	2.3	8
3	Lsm7 phase-separated condensates trigger stress granule formation. Nature Communications, 2022, 13,	12.8	5
4	Yeast-based high-throughput screens for discovery of kinase inhibitors for neglected diseases. Advances in Protein Chemistry and Structural Biology, 2021, 124, 275-309.	2.3	0
5	A Small Molecule Targeting Human MEK $1/2$ Enhances ERK and p38 Phosphorylation under Oxidative Stress or with Phenothiazines. Life, 2021, 11 , 297.	2.4	2
6	Antibacterial and cytotoxic prenylated dihydrochalcones from Eriosema montanum. Fìtoterapìâ, 2021, 149, 104809.	2.2	4
7	Violacein-Induced Chaperone System Collapse Underlies Multistage Antiplasmodial Activity. ACS Infectious Diseases, 2021, 7, 759-776.	3.8	8
8	Antibacterial and cytotoxic biflavonoids from the root bark of Ochna kirkii. Fìtoterapìâ, 2021, 151, 104857.	2.2	3
9	Biflavanones, Chalconoids, and Flavonoid Analogues from the Stem Bark of <i>Ochna holstii</i> Journal of Natural Products, 2021, 84, 364-372.	3.0	5
10	A Genetic Trap in Yeast for Inhibitors of SARS-CoV-2 Main Protease. MSystems, 2021, 6, e0108721.	3.8	13
11	Oxygenated Cyclohexene Derivatives from the Stem and Root Barks of <i>Uvaria pandensis</i> . Journal of Natural Products, 2021, 84, 3080-3089.	3.0	5
12	The fission yeast FHIT homolog affects checkpoint control of proliferation and is regulated by mitochondrial electron transport. Cell Biology International, 2020, 44, 412-423.	3.0	0
13	Caffeine Stabilises Fission Yeast Wee1 in a Rad24-Dependent Manner but Attenuates Its Expression in Response to DNA Damage. Microorganisms, 2020, 8, 1512.	3.6	3
14	Antibacterial activity of 2-amino-3-cyanopyridine derivatives. Mendeleev Communications, 2020, 30, 498-499.	1.6	15
15	Computational Chemogenomics Drug Repositioning Strategy Enables the Discovery of Epirubicin as a New Repurposed Hit for Plasmodium falciparum and P. vivax. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	2
16	Caffeine as a tool for investigating the integration of Cdc25 phosphorylation, activity and ubiquitin-dependent degradation in Schizosaccharomyces pombe. Cell Division, 2020, 15, 10.	2.4	4
17	Oxygenated Cyclohexene Derivatives and Other Constituents from the Roots of <i>Monanthotaxis trichocarpa</i> . Journal of Natural Products, 2020, 83, 210-215.	3.0	16
18	A Redox-Sensitive Thiol in Wis1 Modulates the Fission Yeast Mitogen-Activated Protein Kinase Response to H ₂ O ₂ and Is the Target of a Small Molecule. Molecular and Cellular Biology, 2020, 40, .	2.3	10

#	Article	IF	Citations
19	A High-Throughput Method for Screening for Genes Controlling Bacterial Conjugation of Antibiotic Resistance. MSystems, 2020, 5, .	3.8	10
20	Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaı̕ (<i>Euterpe oleracea</i> Mart.) Polyphenols. ACS Omega, 2019, 4, 15628-15635.	3.5	10
21	Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nature Communications, 2019, 10, 4333.	12.8	211
22	Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS ONE, 2018, 13, e0195969.	2.5	185
23	The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock. PLoS Genetics, 2018, 14, e1007563.	3.5	24
24	Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Frontiers in Cellular and Infection Microbiology, 2018, 8, 34.	3.9	39
25	Exploring How An RNA-binding Protein Affects Stress-exposed Cells. , 2018, , .		0
26	The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at promoters. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 405-419.	1.9	10
27	Suppression of Sensitivity to Drugs and Antibiotics by High External Cation Concentrations in Fission Yeast. PLoS ONE, 2015, 10, e0119297.	2.5	5
28	Stress-induced inhibition of translation independently of eIF2α phosphorylation. Journal of Cell Science, 2015, 128, 4420-7.	2.0	41
29	Cytotoxic Quinones from the Roots of Aloe dawei. Molecules, 2014, 19, 3264-3273.	3.8	19
30	The checkpoint-dependent nuclear accumulation of Rho1p exchange factor Rgf1p is important for tolerance to chronic replication stress. Molecular Biology of the Cell, 2014, 25, 1137-1150.	2.1	9
31	Stress Granule-Defective Mutants Deregulate Stress Responsive Transcripts. PLoS Genetics, 2014, 10, e1004763.	3.5	40
32	Caffeine stabilizes Cdc 25 independently of Rad 3 in S chizosaccharomyces pombe contributing to checkpoint override. Molecular Microbiology, 2014, 92, 777-796.	2.5	10
33	Selective inhibition of RET mediated cell proliferation in vitro by the kinase inhibitor SPP86. BMC Cancer, 2014, 14, 853.	2.6	14
34	Flemingins G–O, Cytotoxic and Antioxidant Constituents of the Leaves of <i>Flemingia grahamiana</i> Journal of Natural Products, 2014, 77, 2060-2067.	3.0	35
35	Anthraquinones of the Roots of Pentas micrantha. Molecules, 2013, 18, 311-321.	3.8	21
36	A role for Myh1 in DNA repair after treatment with strandâ€breaking and crosslinking chemotherapeutic agents. Environmental and Molecular Mutagenesis, 2013, 54, 327-337.	2.2	7

#	Article	IF	CITATIONS
37	Azastilbenes: a cut-off to p38 MAPK inhibitors. Organic and Biomolecular Chemistry, 2013, 11, 4526.	2.8	6
38	Ancient Evolutionary Trade-Offs between Yeast Ploidy States. PLoS Genetics, 2013, 9, e1003388.	3.5	85
39	Antiplasmodial Quinones from <i>Pentas longiflora </i> and <i>Pentas lanceolata </i> . Planta Medica, 2012, 78, 31-35.	1.3	24
40	Yeast mRNA cap-binding protein Cbc1/Sto1 is necessary for the rapid reprogramming of translation after hyperosmotic shock. Molecular Biology of the Cell, 2012, 23, 137-150.	2.1	45
41	Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Research, 2012, 40, e130-e130.	14.5	589
42	Analysis of stress granule assembly in <i>Schizosaccharomyces pombe</i> . Rna, 2012, 18, 694-703.	3.5	30
43	Busseihydroquinones A–D from the Roots of <i>Pentas bussei</i> . Journal of Natural Products, 2012, 75, 1299-1304.	3.0	15
44	Preparation of 3-Substituted-1-Isopropyl-1 <i>H</i> pyrazolo[3,4- <i>d</i>]pyrimidin-4-amines as RET Kinase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 4872-4876.	6.4	47
45	Global Estimation of mRNA Stability in Yeast. Methods in Molecular Biology, 2011, 734, 3-23.	0.9	8
46	Design, Synthesis, and Biological Evaluation of Chromone-Based p38 MAP Kinase Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 7427-7431.	6.4	50
47	Depletion of eIF4G from yeast cells narrows the range of translational efficiencies genome-wide. BMC Genomics, 2011, 12, 68.	2.8	60
48	Cellular stress induces cytoplasmic RNA granules in fission yeast. Rna, 2011, 17, 120-133.	3.5	45
49	Hyperosmosis enhances radiation and hydroxyurea resistance of <i>Schizosaccharomyces pombe</i> checkpoint mutants through the spindle checkpoint and delayed cytokinesis. Molecular Microbiology, 2010, 77, 143-157.	2.5	8
50	The HOG Pathway Dictates the Short-Term Translational Response after Hyperosmotic Shock. Molecular Biology of the Cell, 2010, 21, 3080-3092.	2.1	67
51	Sulfate Assimilation Mediates Tellurite Reduction and Toxicity in Saccharomyces cerevisiae. Eukaryotic Cell, 2010, 9, 1635-1647.	3.4	22
52	Evolutionary loss of 8-oxo-G repair components among eukaryotes. Genome Integrity, 2010, 1, 12.	1.0	16
53	Inhibition of type I histone deacetylase increases resistance of checkpoint-deficient cells to genotoxic agents through mitotic delay. Molecular Cancer Therapeutics, 2009, 8, 2606-2615.	4.1	6
54	mRNA stability changes precede changes in steady-state mRNA amounts during hyperosmotic stress. Rna, 2009, 15, 600-614.	3.5	80

#	Article	IF	CITATIONS
55	Predicting functional upstream open reading frames in Saccharomyces cerevisiae. BMC Bioinformatics, 2009, 10, 451.	2.6	10
56	The ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation. Radiation Oncology, 2009, 4, 51.	2.7	45
57	Rad3 and Sty1 function in <i>Schizosaccharomyces pombe</i> : an integrated response to DNA damage and environmental stress?. Molecular Microbiology, 2008, 68, 246-254.	2.5	18
58	The tumor suppressor homolog in fission yeast, myh $1+$, displays a strong interaction with the checkpoint gene rad $1+$. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 644, 48-55.	1.0	8
59	Fission Yeast Mitogen-Activated Protein Kinase Sty1 Interacts with Translation Factors. Eukaryotic Cell, 2008, 7, 328-338.	3.4	23
60	Identification of putative regulatory upstream ORFs in the yeast genome using heuristics and evolutionary conservation. BMC Bioinformatics, 2007, 8, 295.	2.6	41
61	The Bre5/Ubp3 ubiquitin protease complex from budding yeast contributes to the cellular response to DNA damage. DNA Repair, 2007, 6, 1471-1484.	2.8	27
62	Cytoplasmatic post-transcriptional regulation and intracellular signalling. Molecular Genetics and Genomics, 2007, 277, 341-355.	2.1	18
63	SAPK and Translational Control. , 2007, , 299-310.		0
64	Genome-wide expression profile of the mnn2Î" mutant of Saccharomyces cerevisiae. Antonie Van Leeuwenhoek, 2006, 89, 485-494.	1.7	1
65	A Peroxisomal Glutathione Transferase of Saccharomyces cerevisiae Is Functionally Related to Sulfur Amino Acid Metabolism. Eukaryotic Cell, 2006, 5, 1748-1759.	3.4	41
66	Rck2 Is Required for Reprogramming of Ribosomes during Oxidative Stress. Molecular Biology of the Cell, 2006, 17, 1472-1482.	2.1	43
67	Degradation of Saccharomyces cervisiae Rck2 upon exposure of cells to high levels of zinc is dependent on Pep4. Molecular Genetics and Genomics, 2005, 273, 433-439.	2.1	3
68	Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Molecular Microbiology, 2004, 53, 1743-1756.	2.5	162
69	Evolution and Cellular Function of Monothiol Glutaredoxins: Involvement in Iron-Sulphur Cluster Assembly. Comparative and Functional Genomics, 2004, 5, 328-341.	2.0	47
70	Mkp1 and Mkp2, two MAPKAP-kinase homologues in Schizosaccharomyces pombe, interact with the MAP kinase Sty1. Molecular Genetics and Genomics, 2003, 268, 585-597.	2.1	28
71	Visible trends in functional genomics. Functional and Integrative Genomics, 2003, 3, 91-93.	3 . 5	1
72	Replication Proteins Influence the Maintenance of Telomere Length and Telomerase Protein Stability. Molecular and Cellular Biology, 2003, 23, 3031-3042.	2.3	35

#	Article	IF	CITATIONS
73	Prospects for functional genomics in Schizosaccharomyces pombe. Current Genetics, 2002, 42, 73-84.	1.7	20
74	Functional analysis of yeast gene families involved in metabolism of vitamins B1and B6. Yeast, 2002, 19, 1261-1276.	1.7	89
75	The protein kinases Rck1 and Rck2 inhibit meiosis in budding yeast. Molecular Genetics and Genomics, 2000, 263, 253-261.	2.4	17
76	Characterization of Schizosaccharomyces pombe Hus1: a PCNA-Related Protein That Associates with Rad1 and Rad9. Molecular and Cellular Biology, 2000, 20, 1254-1262.	2.3	222
77	Rck2 Kinase Is a Substrate for the Osmotic Stress-Activated Mitogen-Activated Protein Kinase Hog1. Molecular and Cellular Biology, 2000, 20, 3887-3895.	2.3	132
78	hRAD17, a structural homolog of the Schizosaccharomyces pombe RAD17 cell cycle checkpoint gene, stimulates p53 accumulation. Oncogene, 1999, 18, 1689-1699.	5.9	21
79	Transient inhibition of histone deacetylase activity overcomes silencing in the mating-type region in fission yeast. Current Genetics, 1999, 35, 82-87.	1.7	9
80	Genomic disruption of six budding yeast genes gives one drastic example of phenotype strain-dependence., 1998, 14, 655-664.		9
81	RAD1,a Human Structural Homolog of theSchizosaccharomyces pombe RAD1Cell Cycle Checkpoint Gene. Genomics, 1998, 54, 344-347.	2.9	23
82	Genetic characterisation of hda1+, a putative fission yeast histone deacetylase gene. Nucleic Acids Research, 1998, 26, 3247-3254.	14.5	25
83	Regulation of Telomere Length by Checkpoint Genes in <i>Schizosaccharomyces pombe</i> Biology of the Cell, 1998, 9, 611-621.	2.1	73
84	The RCK1 and RCK2 protein kinase genes from Saccharomyces cerevisiae suppress cell cycle checkpoint mutations in Schizosaccharomyces pombe. Molecular Genetics and Genomics, 1995, 246, 316-326.	2.4	30
85	The Schizosaccharomyces pombe rad1 gene consists of three exons and the cDNA sequence is partially homologous to the Ustilago maydis REC1 cDNA. Gene, 1994, 148, 155-159.	2.2	33
86	Two novel deduced serine/threonine protein kinases from Saccharomyces cerevisiae. Gene, 1994, 139, 27-33.	2.2	33
87	Isolation and characterization of the Schizosaccharomyces pombe rad3 gene, involved in the DNA damage and DNA synthesis checkpoints. Gene, 1992, 119, 83-89.	2.2	81
88	Cloning and analysis of a gene involved in DNA repair and recombination, the rad1 gene of Schizosaccharomyces pombe Molecular and Cellular Biology, 1990, 10, 3750-3760.	2.3	66
89	Increase of extrachromosomal circular DNA in mouse 3T6 cells on perturbation of DNA synthesis: Implications for gene amplification. Somatic Cell and Molecular Genetics, 1989, 15, 61-70.	0.7	17
90	Characterization of repetitive sequence families in mouse heart small polydisperse circular DNAs: age-related studies. Nucleic Acids Research, 1988, 16, 3889-3906.	14.5	26

#	Article	IF	CITATIONS
91	Efficient transient and stable expression in mammalian cells of transfected genes using erythrocyte ghost fusion. Experimental Cell Research, 1987, 173, 218-231.	2.6	6
92	New, small circular DNA in transfected mammalian cells Molecular and Cellular Biology, 1986, 6, 653-662.	2.3	14
93	Molecular cloning and characterization of small polydisperse circular DNA from mouse 3T6 cells. Nucleic Acids Research, 1986, 14, 7823-7838.	14.5	48
94	Replication and expression in mammalian cells of tramfected DNA; description of an improved erythrocyte ghost fusion technique. Nucleic Acids Research, 1983, 11, 7287-7302.	14.5	25
95	Comparative genomics and gene finding in fungi., 0,, 1-28.		4