Albert Y Lau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2858384/publications.pdf Version: 2024-02-01

		430874	434195
31	2,176	18	31
papers	citations	h-index	g-index
33	33	33	2412
all docs	docs citations	times ranked	citing authors

Διβέρτ ΥΙλιι

#	Article	IF	CITATIONS
1	Self-Assembling Protein Microarrays. Science, 2004, 305, 86-90.	12.6	537
2	Crystal Structure of a Human Alkylbase-DNA Repair Enzyme Complexed to DNA. Cell, 1998, 95, 249-258.	28.9	284
3	Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13573-13578.	7.1	219
4	3-methyladenine DNA glycosylases: structure, function, and biological importance. BioEssays, 1999, 21, 668-676.	2.5	173
5	The hidden energetics of ligand binding and activation in a glutamate receptor. Nature Structural and Molecular Biology, 2011, 18, 283-287.	8.2	112
6	Detection of Protein Folding Defects Caused by BRCA1-BRCT Truncation and Missense Mutations. Journal of Biological Chemistry, 2003, 278, 53007-53016.	3.4	111
7	The Free Energy Landscapes Governing Conformational Changes in a Glutamate Receptor Ligand-Binding Domain. Structure, 2007, 15, 1203-1214.	3.3	104
8	Conformational Analysis of NMDA Receptor GluN1, GluN2, and GluN3 Ligand-Binding Domains Reveals Subtype-Specific Characteristics. Structure, 2013, 21, 1788-1799.	3.3	86
9	Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6814-6819.	7.1	82
10	Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase. Mutation Research DNA Repair, 2000, 460, 201-210.	3.7	61
11	Base Excision and DNA Binding Activities of Human Alkyladenine DNA Glycosylase Are Sensitive to the Base Paired with a Lesion. Journal of Biological Chemistry, 2001, 276, 13379-13387.	3.4	57
12	Glutamate and Glycine Binding to the NMDA Receptor. Structure, 2018, 26, 1035-1043.e2.	3.3	42
13	A Conformational Intermediate in Glutamate Receptor Activation. Neuron, 2013, 79, 492-503.	8.1	39
14	A structural model for K2P potassium channels based on 23 pairs of interacting sites and continuum electrostatics. Journal of General Physiology, 2009, 134, 53-68.	1.9	36
15	Molecular lock regulates binding of glycine to a primitive NMDA receptor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6786-E6795.	7.1	30
16	Neurotransmitter Funneling Optimizes Glutamate Receptor Kinetics. Neuron, 2018, 97, 139-149.e4.	8.1	25
17	Functional classification of proteins and protein variants. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6576-6581.	7.1	23
18	Computing conformational free energy by deactivated morphing. Journal of Chemical Physics, 2008, 129, 134102.	3.0	23

Albert Y Lau

#	Article	IF	CITATIONS
19	Dynamics of the Ligand Binding Domain Layer during AMPA Receptor Activation. Biophysical Journal, 2016, 110, 896-911.	0.5	19
20	Voltage Profile along the Permeation Pathway of an Open Channel. Biophysical Journal, 2010, 99, 2863-2869.	0.5	18
21	Energetics of Clutamate Binding to an Ionotropic Clutamate Receptor. Journal of Physical Chemistry B, 2017, 121, 10436-10442.	2.6	18
22	Distinct axial and lateral interactions within homologous filaments dictate the signaling specificity and order of the AIM2-ASC inflammasome. Nature Communications, 2021, 12, 2735.	12.8	15
23	D-Serine Potently Drives Ligand-Binding Domain Closure in the Ionotropic Glutamate Receptor GluD2. Structure, 2020, 28, 1168-1178.e2.	3.3	14
24	Finding Druggable Sites in Proteins Using TACTICS. Journal of Chemical Information and Modeling, 2021, 61, 2897-2910.	5.4	13
25	Development and characterization of functional antibodies targeting NMDA receptors. Nature Communications, 2022, 13, 923.	12.8	11
26	High Conformational Variability in the GluK2 Kainate Receptor Ligand-Binding Domain. Structure, 2019, 27, 189-195.e2.	3.3	7
27	Enhanced sampling of glutamate receptor ligand-binding domains. Neuroscience Letters, 2019, 700, 17-21.	2.1	4
28	Computing Conformational Free Energies of iGluR Ligand-Binding Domains. Neuromethods, 2016, , 119-132.	0.3	4
29	Structural biology and thermodynamics of GluD receptors. Neuropharmacology, 2021, 191, 108542.	4.1	3
30	3â€methyladenine DNA glycosylases: structure, function, and biological importance. BioEssays, 1999, 21, 668-676.	2.5	3
31	One domain, multiple conformations. Nature Chemical Biology, 2011, 7, 130-131.	8.0	2