
## Marjorie S Schulz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/285838/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Demonstration of significant abiotic iron isotope fractionation in nature. Geology, 2001, 29, 699.                                                                                                                                                   | 2.0 | 340       |
| 2  | Chemical Weathering in a Tropical Watershed, Luquillo Mountains, Puerto Rico: I. Long-Term Versus<br>Short-Term Weathering Fluxes. Geochimica Et Cosmochimica Acta, 1998, 62, 209-226.                                                               | 1.6 | 339       |
| 3  | Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of<br>mineralogical and surface area changes and calculation of primary silicate reaction rates. Geochimica<br>Et Cosmochimica Acta, 1996, 60, 2533-2550. | 1.6 | 315       |
| 4  | Differential rates of feldspar weathering in granitic regoliths. Geochimica Et Cosmochimica Acta, 2001, 65, 847-869.                                                                                                                                 | 1.6 | 313       |
| 5  | The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks.<br>Geochimica Et Cosmochimica Acta, 1999, 63, 3277-3291.                                                                                         | 1.6 | 266       |
| 6  | The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochimica Et<br>Cosmochimica Acta, 1999, 63, 1939-1953.                                                                                                             | 1.6 | 260       |
| 7  | Chemical weathering of a soil chronosequence on granitoid alluvium: II. Mineralogic and isotopic constraints on the behavior of strontium. Geochimica Et Cosmochimica Acta, 1997, 61, 291-306.                                                       | 1.6 | 148       |
| 8  | The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis. Geochimica Et Cosmochimica Acta, 2005, 69, 1455-1471.                                                                | 1.6 | 131       |
| 9  | Chemical weathering of a marine terrace chronosequence, Santa Cruz, California I: Interpreting rates<br>and controls based on soil concentration–depth profiles. Geochimica Et Cosmochimica Acta, 2008, 72,<br>36-68.                                | 1.6 | 125       |
| 10 | Long-term controls on soil organic carbon with depth and time: A case study from the Cowlitz River<br>Chronosequence, WA USA. Geoderma, 2015, 247-248, 73-87.                                                                                        | 2.3 | 105       |
| 11 | Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. Part II: Solute profiles, gradients and the comparisons of contemporary and long-term weathering rates. Geochimica Et Cosmochimica Acta, 2009, 73, 2769-2803.        | 1.6 | 102       |
| 12 | Chemical weathering rates of a soil chronosequence on granitic alluvium: III. Hydrochemical<br>evolution and contemporary solute fluxes and rates. Geochimica Et Cosmochimica Acta, 2005, 69,<br>1975-1996.                                          | 1.6 | 94        |
| 13 | Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico III: quartz dissolution rates. Geochimica Et Cosmochimica Acta, 1999, 63, 337-350.                                                                                      | 1.6 | 93        |
| 14 | Variations in the Fineâ€6cale Composition of a Central Pacific Ferromanganese Crust:<br>Paleoceanographic Implications. Paleoceanography, 1992, 7, 63-77.                                                                                            | 3.0 | 87        |
| 15 | Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern<br>Izuâ€Bonin arc system, western Pacific. Journal of Geophysical Research, 2008, 113, .                                                                    | 3.3 | 83        |
| 16 | Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico. Earth Surface<br>Processes and Landforms, 2013, 38, 1170-1186.                                                                                                 | 1.2 | 71        |
| 17 | Biogenic and pedogenic controls on Si distributions and cycling in grasslands of the Santa Cruz soil chronosequence, California. Geochimica Et Cosmochimica Acta, 2012, 94, 72-94.                                                                   | 1.6 | 67        |
| 18 | Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical<br>Zone Observatory. Geochimica Et Cosmochimica Acta, 2017, 196, 224-251.                                                                         | 1.6 | 62        |

MARJORIE S SCHULZ

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | From pools to flow: The PROMISE framework for new insights on soil carbon cycling in a changing world. Global Change Biology, 2020, 26, 6631-6643.                                    | 4.2 | 57        |
| 20 | Mineralogy dictates the initial mechanism of microbial necromass association. Geochimica Et Cosmochimica Acta, 2019, 260, 161-176.                                                    | 1.6 | 51        |
| 21 | Shifting microbial community structure across a marine terrace grassland chronosequence, Santa<br>Cruz, California. Soil Biology and Biochemistry, 2010, 42, 21-31.                   | 4.2 | 38        |
| 22 | Root-driven weathering impacts on mineral-organic associations in deep soils over pedogenic time scales. Geochimica Et Cosmochimica Acta, 2019, 263, 68-84.                           | 1.6 | 29        |
| 23 | Low sulfur content in submarine lavas: An unreliable indicator of subaerial eruption. Geology, 1991, 19, 750.                                                                         | 2.0 | 27        |
| 24 | Biologic Origin of Iron Nodules in a Marine Terrace Chronosequence, Santa Cruz, California. Soil<br>Science Society of America Journal, 2010, 74, 550-564.                            | 1.2 | 26        |
| 25 | Structured Heterogeneity in a Marine Terrace Chronosequence: Upland Mottling. Vadose Zone<br>Journal, 2016, 15, 1-14.                                                                 | 1.3 | 25        |
| 26 | The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California. Geochimica Et Cosmochimica Acta, 2012, 77, 62-85. | 1.6 | 24        |
| 27 | Long-term flow-through column experiments and their relevance to natural granitoid weathering rates. Geochimica Et Cosmochimica Acta, 2017, 202, 190-214.                             | 1.6 | 22        |
| 28 | Percolation and transport in a sandy soil under a natural hydraulic gradient. Water Resources<br>Research, 2005, 41, .                                                                | 1.7 | 17        |
| 29 | The trajectory of soil development and its relationship to soil carbon dynamics. Geoderma, 2021, 403, 115378.                                                                         | 2.3 | 11        |
| 30 | Vadose zone controls on weathering intensity and depth: Observations from grussic saprolites.<br>Applied Geochemistry, 2011, 26, S36-S39.                                             | 1.4 | 9         |
| 31 | Seasonal dynamics of CO2 profiles across a soil chronosequence, Santa Cruz, California. Applied<br>Geochemistry, 2011, 26, S132-S134.                                                 | 1.4 | 9         |
| 32 | Controls on soil pore water solutes: An approach for distinguishing between biogenic and lithogenic processes. Journal of Geochemical Exploration, 2006, 88, 363-366.                 | 1.5 | 8         |
| 33 | Solute profiles in soils, weathering gradients and exchange equilibrium/disequilibrium. Mineralogical<br>Magazine, 2008, 72, 149-153.                                                 | 0.6 | 7         |
| 34 | Response to â€~Stochastic and deterministic interpretation of pool models'. Global Change Biology,<br>2021, 27, e11-e12.                                                              | 4.2 | 1         |
| 35 | Response to "Connectivity and pore accessibility in models of soil carbon cycling― Global Change<br>Biology, 2021, 27, e15-e16.                                                       | 4.2 | 0         |
| 36 | Mechanisms for retention of low molecular weight organic carbon varies with soil depth at a coastal prairie ecosystem. Soil Biology and Biochemistry, 2022, , 108601.                 | 4.2 | 0         |