
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2857674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Personalized nutrition. , 2024, , 540-561.		0
2	"Nourish to Flourishâ€: complementary feeding for a healthy infant gut microbiome—a non-randomised pilot feasibility study. Pilot and Feasibility Studies, 2022, 8, 103.	1.2	1
3	Plasma B Vitamers: Population Epidemiology and Parent-Child Concordance in Children and Adults. Nutrients, 2021, 13, 821.	4.1	5
4	Circulating Structurally Related (-)-Epicatechin Metabolite Species and Levels after Sustained Intake of a Cocoa Powder High in Polyphenols Are Comparable to Those Achieved after a Single Dose. Nutrients, 2021, 13, 3829.	4.1	3
5	Artificial Intelligence in Functional Food Ingredient Discovery and Characterisation: A Focus on Bioactive Plant and Food Peptides. Frontiers in Genetics, 2021, 12, 768979.	2.3	13
6	Robotic automation of a UHPLC/MS-MS method profiling one-carbon metabolites, amino acids, and precursors in plasma. Analytical Biochemistry, 2020, 592, 113558.	2.4	15
7	Gene expression changes by high-polyphenols cocoa powder intake: a randomized crossover clinical study. European Journal of Nutrition, 2019, 58, 1887-1898.	3.9	16
8	Insulin Resistance during normal child growth and development is associated with a distinct blood metabolic phenotype (Earlybird 72). Pediatric Diabetes, 2019, 20, 832-841.	2.9	22
9	Proteomes of Paired Human Cerebrospinal Fluid and Plasma: Relation to Blood–Brain Barrier Permeability in Older Adults. Journal of Proteome Research, 2019, 18, 1162-1174.	3.7	40
10	Perspective: Advancing Understanding of Population Nutrient–Health Relations via Metabolomics and Precision Phenotypes. Advances in Nutrition, 2019, 10, 944-952.	6.4	14
11	Vitamin B2 and Folate Concentrations are Associated with ARA, EPA and DHA Fatty Acids in Red Blood Cells of Brazilian Children and Adolescents. Nutrients, 2019, 11, 2918.	4.1	16
12	Mitochondrial lysine deacetylation promotes energy metabolism and calcium signaling in insulinâ€secreting cells. FASEB Journal, 2019, 33, 4660-4674.	0.5	23
13	An Adaptive Pipeline To Maximize Isobaric Tagging Data in Large-Scale MS-Based Proteomics. Journal of Proteome Research, 2018, 17, 2165-2173.	3.7	11
14	Front Cover: The differential plasma proteome of obese and overweight individuals undergoing a nutritional weight loss and maintenance intervention. Proteomics - Clinical Applications, 2018, 12, 1870001.	1.6	5
15	Clinical and Vitamin Response to a Shortâ€Term Multiâ€Micronutrient Intervention in Brazilian Children and Teens: From Population Data to Interindividual Responses. Molecular Nutrition and Food Research, 2018, 62, e1700613.	3.3	27
16	The differential plasma proteome of obese and overweight individuals undergoing a nutritional weight loss and maintenance intervention. Proteomics - Clinical Applications, 2018, 12, 1600150.	1.6	39
17	Obesity shows preserved plasma proteome in large independent clinical cohorts. Scientific Reports, 2018, 8, 16981.	3.3	45
18	Front cover: The Impact of Nutritional Interventions in Pregnant Women on DNA Methylation Patterns of the Offspring: A Systematic Review. Molecular Nutrition and Food Research, 2018, 62, 1870099.	3.3	0

#	Article	IF	CITATIONS
19	A reverse metabolic approach to weaning: in silico identification of immune-beneficial infant gut bacteria, mining their metabolism for prebiotic feeds and sourcing these feeds in the natural product space. Microbiome, 2018, 6, 171.	11.1	21
20	The Impact of Nutritional Interventions in Pregnant Women on DNA Methylation Patterns of the Offspring: A Systematic Review. Molecular Nutrition and Food Research, 2018, 62, e1800034.	3.3	11
21	"Exosomicsâ€â€"A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk. Frontiers in Genetics, 2018, 9, 92.	2.3	143
22	Maternal Circulating Vitamin Status and Colostrum Vitamin Composition in Healthy Lactating Women—A Systematic Approach. Nutrients, 2018, 10, 687.	4.1	19
23	Alzheimer disease pathology and the cerebrospinal fluid proteome. Alzheimer's Research and Therapy, 2018, 10, 66.	6.2	67
24	Improvement of cardiometabolic markers after fish oil intervention in young Mexican adults and the role of PPARα L162V and PPARγ2 P12A. Journal of Nutritional Biochemistry, 2017, 43, 98-106.	4.2	14
25	One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond. Alzheimer's Research and Therapy, 2017, 9, 43.	6.2	46
26	Coordinated activation of mitochondrial respiration and exocytosis mediated by PKC signaling in pancreatic β cells. FASEB Journal, 2017, 31, 1028-1045.	0.5	17
27	Metabonomics of ageing – Towards understanding metabolism of a long and healthy life. Mechanisms of Ageing and Development, 2017, 165, 171-179.	4.6	17
28	Circadian and Feeding Rhythms Orchestrate the Diurnal Liver Acetylome. Cell Reports, 2017, 20, 1729-1743.	6.4	72
29	A Highly Automated Shotgun Proteomic Workflow: Clinical Scale and Robustness for Biomarker Discovery in Blood. Methods in Molecular Biology, 2017, 1619, 433-449.	0.9	21
30	Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver. Cell Metabolism, 2017, 25, 102-117.	16.2	164
31	High-throughput and simultaneous quantitative analysis of homocysteine–methionine cycle metabolites and co-factors in blood plasma and cerebrospinal fluid by isotope dilution LC–MS/MS. Analytical and Bioanalytical Chemistry, 2017, 409, 295-305.	3.7	74
32	Healthy ageing phenotypes and trajectories. , 2017, , 1243-1250.		1
33	Urinary metabolic insights into host-gut microbial interactions in healthy and IBD children. World Journal of Gastroenterology, 2017, 23, 3643.	3.3	38
34	Urinary Metabolic Phenotyping Reveals Differences in the Metabolic Status of Healthy and Inflammatory Bowel Disease (IBD) Children in Relation to Growth and Disease Activity. International Journal of Molecular Sciences, 2016, 17, 1310.	4.1	24
35	A systems approach to personalised nutrition: Report on the Keystone Symposium "Human Nutrition, Environment and Health― Applied & Translational Genomics, 2016, 10, 16-18.	2.1	6
36	High-throughput method for the quantitation of metabolites and co-factors from homocysteine–methionine cycle for nutritional status assessment. Bioanalysis, 2016, 8, 1937-1949.	1.5	23

#	Article	IF	CITATIONS
37	Proteomic Biomarker Discovery in 1000 Human Plasma Samples with Mass Spectrometry. Journal of Proteome Research, 2016, 15, 389-399.	3.7	77
38	Human nutrition, environment, and health. Genes and Nutrition, 2015, 10, 489.	2.5	9
39	Goals in Nutrition Science 2015–2020. Frontiers in Nutrition, 2015, 2, 26.	3.7	31
40	Enabling nutrient security and sustainability through systems research. Genes and Nutrition, 2015, 10, 462.	2.5	17
41	The genomics of micronutrient requirements. Genes and Nutrition, 2015, 10, 466.	2.5	21
42	Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate. Cellular Signalling, 2015, 27, 978-988.	3.6	143
43	The Human Diabetes Proteome Project (HDPP): The 2014 update. Translational Proteomics, 2015, 8-9, 1-7.	1.2	7
44	Proteomics of Cerebrospinal Fluid: Throughput and Robustness Using a Scalable Automated Analysis Pipeline for Biomarker Discovery. Analytical Chemistry, 2015, 87, 10755-10761.	6.5	34
45	Blood plasma lipidomic signature of epicardial fat in healthy obese women. Obesity, 2015, 23, 130-137.	3.0	17
46	Proteomics and circadian rhythms: It's all about signaling!. Proteomics, 2015, 15, 310-317.	2.2	28
47	Impact of breast-feeding and high- and low-protein formula on the metabolism and growth of infants from overweight and obese mothers. Pediatric Research, 2014, 75, 535-543.	2.3	52
48	Reprint of: Musculoskeletal system in the old age and the demand for healthy ageing biomarkers. Mechanisms of Ageing and Development, 2014, 136-137, 94-100.	4.6	9
49	Comprehensive and Scalable Highly Automated MS-Based Proteomic Workflow for Clinical Biomarker Discovery in Human Plasma. Journal of Proteome Research, 2014, 13, 3837-3845.	3.7	49
50	Translational genomics. Applied & Translational Genomics, 2014, 3, 43-47.	2.1	9
51	Omics: Technologies and Translations. , 2014, , 121-152.		Ο
52	Vitamin E and Vitamin E Acetate Absorption from Self-assembly Systems under Pancreas Insufficiency Conditions. Chimia, 2014, 68, 129.	0.6	9
53	Systems Biology Approaches for Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2014, 20, 2104-2114.	1.9	32
54	Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging, 2014, 6, 9-25.	3.1	126

#	Article	IF	CITATIONS
55	Proteomics in the Systems-Level Study of the Metabolic Syndrome. , 2014, , 185-212.		0
56	Model Organisms Proteomics-From Holobionts to Human Nutrition. Proteomics, 2013, 13, 2537-2541.	2.2	4
57	Musculoskeletal system in the old age and the demand for healthy ageing biomarkers. Mechanisms of Ageing and Development, 2013, 134, 541-547.	4.6	32
58	The Biology/Disease-driven Human Proteome Project (B/D-HPP): Enabling Protein Research for the Life Sciences Community. Journal of Proteome Research, 2013, 12, 23-27.	3.7	100
59	The Human Diabetes Proteome Project (HDPP): From network biology to targets for therapies and prevention. Translational Proteomics, 2013, 1, 3-11.	1.2	18
60	Proteomics of human plasma: A critical comparison of analytical workflows in terms of effort, throughput and outcome. EuPA Open Proteomics, 2013, 1, 8-16.	2.5	40
61	Double-balloon jejunal perfusion to compare absorption of vitamin E and vitamin E acetate in healthy volunteers under maldigestion conditions. European Journal of Clinical Nutrition, 2013, 67, 202-206.	2.9	20
62	Perspective: a systems approach to diabetes research. Frontiers in Genetics, 2013, 4, 205.	2.3	33
63	Combination of Gas-Phase Fractionation and MS ³ Acquisition Modes for Relative Protein Quantification with Isobaric Tagging. Journal of Proteome Research, 2012, 11, 5081-5089.	3.7	31
64	Mass spectrometry for nutritional peptidomics: How to analyze food bioactives and their health effects. Journal of Proteomics, 2012, 75, 3546-3559.	2.4	126
65	Special Issue "Genome Regulation― Journal of Proteomics, 2012, 75, 3381-3385.	2.4	1
66	A Nutrigenomics View of Protein Intake. Progress in Molecular Biology and Translational Science, 2012, 108, 51-74.	1.7	27
67	Consequences of Exchanging Carbohydrates for Proteins in the Cholesterol Metabolism of Mice Fed a High-fat Diet. PLoS ONE, 2012, 7, e49058.	2.5	9
68	Non-covalent binding of proteins to polyphenols correlates with their amino acid sequence. Food Chemistry, 2012, 132, 1333-1339.	8.2	73
69	Metabotyping of <i>Caenorhabditis elegans</i> and their Culture Media Revealed Unique Metabolic Phenotypes Associated to Amino Acid Deficiency and Insulin-Like Signaling. Journal of Proteome Research, 2011, 10, 990-1003.	3.7	37
70	Toward Protein Biomarkers for Allergy: CD4+ T Cell Proteomics in Allergic and Nonallergic Subjects Sampled in and out of Pollen Season. Journal of Proteome Research, 2011, 10, 1558-1570.	3.7	9
71	Nutriproteomics: technologies and applications for identification and quantification of biomarkers and ingredients. Proceedings of the Nutrition Society, 2011, 70, 351-364.	1.0	20
72	Genetics Meets Proteomics: Correlating the Portuguese Water Dog Blood Serum Proteome with Genetic Markers. Proteomics Insights, 2011, 4, PRI.S6470.	2.0	0

MARTIN KUSSMANN

#	Article	IF	CITATIONS
73	The GNB3 C825T polymorphism as a pharmacogenetic marker in the treatment of hypertension, obesity, and depression. Pharmacogenetics and Genomics, 2011, 21, 594-606.	1.5	57
74	Influence of gut microbiota on mouse B2 B cell ontogeny and function. Molecular Immunology, 2011, 48, 1091-1101.	2.2	39
75	Plasma pharmacokinetics of catechin metabolite 4′-O-Me-EGC in healthy humans. European Journal of Nutrition, 2011, 50, 575-580.	3.9	24
76	Mechanisms of weight maintenance under high―and lowâ€protein, lowâ€glycaemic index diets. Molecular Nutrition and Food Research, 2011, 55, 1603-1612.	3.3	14
77	Time-resolved Quantitative Proteome Analysis of In Vivo Intestinal Development. Molecular and Cellular Proteomics, 2011, 10, M110.005231.	3.8	25
78	The Extended Nutrigenomics – Understanding the Interplay between the Genomes of Food, Gut Microbes, and Human Host. Frontiers in Genetics, 2011, 2, 21.	2.3	61
79	Proteomics at the interface of psychology, gut physiology and dysfunction: an underexploited approach that deserves expansion. Expert Review of Proteomics, 2011, 8, 605-614.	3.0	3
80	Transcriptome and translational signaling following endurance exercise in trained skeletal muscle: impact of dietary protein. Physiological Genomics, 2011, 43, 1004-1020.	2.3	50
81	Nutriproteomics – Linking Proteomics Variation with Personalized Nutrition. Current Pharmacogenomics and Personalized Medicine, 2010, 8, 245-256.	0.2	5
82	Comparative gene expression profiling between human cultured myotubes and skeletal muscle tissue. BMC Genomics, 2010, 11, 125.	2.8	26
83	Qualitative and quantitative profiling of the bovine milk fat globule membrane proteome. Journal of Proteomics, 2010, 73, 1079-1088.	2.4	129
84	Nutrigenomics: where are we with genetic and epigenetic markers for disposition and susceptibility?. Nutrition Reviews, 2010, 68, S38-S47.	5.8	42
85	Differential Human Plasma Proteomics Based on AniBal Quantification and Peptide-level Off-Gel Isoelectric Focussing. Proteomics Insights, 2010, 3, PRI.S4851.	2.0	1
86	Proteomics in Nutrition: Status Quo and Outlook for Biomarkers and Bioactives. Journal of Proteome Research, 2010, 9, 4876-4887.	3.7	65
87	Proteomics at the center of nutrigenomics: Comprehensive molecular understanding of dietary health effects. Nutrition, 2009, 25, 1085-1093.	2.4	21
88	Label-free quantitative proteomics of two Bifidobacterium longum strains. Journal of Proteomics, 2009, 72, 771-784.	2.4	23
89	OMICS-rooted studies of milk proteins, oligosaccharides and lipids. Journal of Proteomics, 2009, 73, 196-208.	2.4	88
90	Quantification of flavan-3-ols and phenolic acids in milk-based food products by reversed-phase liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2009, 1216, 8362-8370.	3.7	18

MARTIN KUSSMANN

#	Article	IF	CITATIONS
91	Quantification of Anthocyanins and Flavonols in Milk-Based Food Products by Ultra Performance Liquid Chromatographyâ^'Tandem Mass Spectrometry. Analytical Chemistry, 2009, 81, 6347-6356.	6.5	34
92	Role of proteomics in nutrigenomics and nutrigenetics. Expert Review of Proteomics, 2009, 6, 453-456.	3.0	3
93	Rapid identification of differentiation markers from whole epithelial cells by matrixâ€assisted laser desorption/ionisation timeâ€ofâ€flight mass spectrometry and statistical analysis. Rapid Communications in Mass Spectrometry, 2008, 22, 1099-1108.	1.5	21
94	Gas chromatography/tandem mass spectrometry analysis of alkylresorcinols in red blood cells. Rapid Communications in Mass Spectrometry, 2008, 22, 4098-4104.	1.5	12
95	Experimental and computational approaches to quantitative proteomics: Status quo and outlook. Journal of Proteomics, 2008, 71, 19-33.	2.4	108
96	Maternal deprivation affects the neuromuscular protein profile of the rat colon in response to an acute stressor later in life. Journal of Proteomics, 2008, 71, 80-88.	2.4	20
97	Profiling techniques in nutrition and health research. Current Opinion in Biotechnology, 2008, 19, 83-99.	6.6	73
98	Guidelines for reporting the use of mass spectrometry in proteomics. Nature Biotechnology, 2008, 26, 860-861.	17.5	82
99	Proteomics-based diagnosis of chronic obstructive pulmonary disease: the hunt for new markers. Expert Review of Proteomics, 2008, 5, 693-704.	3.0	19
100	Nutrigenomics and personalized nutrition: science and concept. Personalized Medicine, 2008, 5, 447-455.	1.5	57
101	ANIBAL, Stable Isotope-based Quantitative Proteomics by Aniline and Benzoic Acid Labeling of Amino and Carboxylic Groups. Molecular and Cellular Proteomics, 2008, 7, 800-812.	3.8	40
102	OMICS-Derived Targets for Inflammatory Gut Disorders: Opportunities for the Development of Nutrition Related Biomarkers. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2007, 7, 271-287.	1.2	26
103	How to comprehensively analyse proteins and how this influences nutritional research. Clinical Chemistry and Laboratory Medicine, 2007, 45, 288-300.	2.3	9
104	Automated Target Preparation for Gene Expression: Oligonucleotide Microarrays. Chimia, 2007, 61, 387.	0.6	0
105	Comprehensive Analysis of Vitamin E Constituents in Human Plasma by Liquid Chromatographyâ Mass Spectrometry. Analytical Chemistry, 2007, 79, 7087-7096.	6.5	47
106	Mass spectrometry in nutrition: Understanding dietary health effects at the molecular level. Mass Spectrometry Reviews, 2007, 26, 727-750.	5.4	59
107	Mass spectrometry as a rapid and powerful alternative to antibodies for detecting LPXTG wall-associated proteins of Staphylococcus aureus. International Journal of Mass Spectrometry, 2007, 268, 234-243.	1.5	4
108	-Omics for Prevention: Gene, Protein and Metabolite Profiling to Better Understand Individual Disposition to Disease. , 2006, 57, 247-255.		1

#	Article	IF	CITATIONS
109	OMICS-driven biomarker discovery in nutrition and health. Journal of Biotechnology, 2006, 124, 758-787.	3.8	268
110	Automated Target Preparation for Microarray-Based Gene Expression Analysis. Analytical Chemistry, 2006, 78, 6299-6305.	6.5	16
111	Proteomic methods in nutrition. Current Opinion in Clinical Nutrition and Metabolic Care, 2006, 9, 575-583.	2.5	38
112	Combining protein identification and quantification: C-terminal isotope-coded tagging using sulfanilic acid. Rapid Communications in Mass Spectrometry, 2006, 20, 1585-1594.	1.5	16
113	Differentially isotope-coded N-terminal protein sulphonation: Combining protein identification and quantification. Proteomics, 2006, 6, 2338-2349.	2.2	24
114	Rapid enrichment of bioactive milk proteins and iterative, consolidated protein identification by multidimensional protein identification technology. Proteomics, 2005, 5, 3836-3846.	2.2	23
115	Proteomics of the rat gut: Analysis of the myenteric plexus-longitudinal muscle preparation. Proteomics, 2005, 5, 2561-2569.	2.2	28
116	Proteomics in Nutrition and Health. Combinatorial Chemistry and High Throughput Screening, 2005, 8, 679-696.	1.1	39
117	Identification of Protein-Protein Interfaces Implicated in CD80-CD28 Costimulatory Signaling. Journal of Immunology, 2004, 172, 6803-6809.	0.8	19
118	Industrial-scale proteomics: From liters of plasma to chemically synthesized proteins. Proteomics, 2004, 4, 2125-2150.	2.2	103
119	Rapid identification of stress-related fingerprint from whole bacterial cells of Bifidobacterium lactis using matrix assisted laser desorption/ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2004, 15, 1222-1227.	2.8	20
120	Chemical crossâ€linking with thiolâ€cleavable reagents combined with differential mass spectrometric peptide mapping—A novel approach to assess intermolecular protein contacts. Protein Science, 2000, 9, 1503-1518.	7.6	140
121	Sample Preparation Techniques for Peptides and Proteins Analyzed by MALDI-MS. , 2000, 146, 405-424.		53
122	Comparison of in Vivo and in Vitro Phosphorylation of the Exocytosis-Sensitive Protein PP63/Parafusin by Differential MALDI Mass Spectrometric Peptide Mappingâ€. Biochemistry, 1999, 38, 7780-7790.	2.5	35
123	Characterisation of the covalent structure of proteins from biological material by MALDI mass spectrometry ‣ possibilities and limitations. Spectroscopy, 1998, 14, 1-27.	0.8	16
124	Matrix-assisted Laser Desorption/Ionization Mass Spectrometric Peptide Mapping of the Neural Cell Adhesion Protein Neurolin Purified by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis or Acidic Precipitation. , 1997, 32, 483-493.		83
125	Matrix-assisted Laser Desorption/Ionization Mass Spectrometry Sample Preparation Techniques Designed for Various Peptide and Protein Analytes. Journal of Mass Spectrometry, 1997, 32, 593-601.	1.6	432
126	[41] Tertiary structure-selective characterization ofprotein dithiol groups by phenylarsine oxide modification and mass spectrometric peptide mapping. Methods in Enzymology, 1995, 251, 430-435.	1.0	12

#	Article	IF	CITATIONS
127	Synthesis, Structural and Biochemical Characterization of Cytostatic Methotrexate-Î ³ -Glutamyl-Glutathione Conjugates. Advances in Experimental Medicine and Biology, 1993, 338, 453-456.	1.6	1
128	Chapter 11. Conclusion. RSC Food Analysis Monographs, 0, , 329-331.	0.2	0
129	Omics in Nutrition and Health Research. , 0, , 11-29.		4
130	Chapter 9. Nutrition and Immunity. RSC Food Analysis Monographs, 0, , 268-309.	0.2	1
131	Chapter 1. Mass Spectrometry Technologies. RSC Food Analysis Monographs, 0, , 3-47.	0.2	Ο