Jiaqing Kou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2857368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immersed boundary method for high-order flux reconstruction based on volume penalization. Journal of Computational Physics, 2022, 448, 110721.	3.8	13
2	Data-driven eigensolution analysis based on a spatio-temporal Koopman decomposition, with applications to high-order methods. Journal of Computational Physics, 2022, 449, 110798.	3.8	5
3	Eigensolution analysis of immersed boundary method based on volume penalization: Applications to high-order schemes. Journal of Computational Physics, 2022, 449, 110817.	3.8	3
4	Non-modal analysis of linear multigrid schemes for the high-order Flux Reconstruction method. Journal of Computational Physics, 2022, 456, 111070.	3.8	2
5	Deep Learning for Multifidelity Aerodynamic Distribution Modeling from Experimental and Simulation Data. AIAA Journal, 2022, 60, 4413-4427.	2.6	10
6	Incorporating Physical Models for Dynamic Stall Prediction Based on Machine Learning. AIAA Journal, 2022, 60, 4428-4439.	2.6	3
7	Data-driven modeling for unsteady aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 2021, 125, 100725.	12.1	75
8	Unsteady aerodynamic reduced-order modeling based on machine learning across multiple airfoils. Aerospace Science and Technology, 2021, 119, 107173.	4.8	27
9	A new dynamic stall prediction framework based on symbiosis of experimental and simulation data. Physics of Fluids, 2021, 33, .	4.0	12
10	Multiâ€fidelity surrogate reducedâ€order modeling of steady flow estimation. International Journal for Numerical Methods in Fluids, 2020, 92, 1826-1844.	1.6	17
11	Accelerating the convergence of steady adjoint equations by dynamic mode decomposition. Structural and Multidisciplinary Optimization, 2020, 62, 747-756.	3.5	11
12	Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils. Applied Mathematical Modelling, 2019, 76, 832-855.	4.2	35
13	Mode multigrid - A novel convergence acceleration method. Aerospace Science and Technology, 2019, 92, 605-619.	4.8	12
14	Dynamic mode decomposition with exogenous input for data-driven modeling of unsteady flows. Physics of Fluids, 2019, 31, .	4.0	46
15	Unsteady aerodynamic modeling based on fuzzy scalar radial basis function neural networks. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233, 5107-5121.	1.3	19
16	Mode competition in galloping of a square cylinder at low Reynolds number. Journal of Fluid Mechanics, 2019, 867, 516-555.	3.4	64
17	Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers. Nonlinear Dynamics, 2019, 96, 2157-2177.	5.2	82
18	A hybrid reduced-order framework for complex aeroelastic simulations. Aerospace Science and Technology, 2019, 84, 880-894.	4.8	61

JIAQING KOU

#	Article	IF	CITATIONS
19	Machine learning methods for turbulence modeling in subsonic flows around airfoils. Physics of Fluids, 2019, 31, .	4.0	201
20	A reduced-order model for compressible flows with buffeting condition using higher order dynamic mode decomposition with a mode selection criterion. Physics of Fluids, 2018, 30, .	4.0	66
21	Reduced-Order Modeling for Nonlinear Aeroelasticity with Varying Mach Numbers. Journal of Aerospace Engineering, 2018, 31, .	1.4	21
22	Multi-kernel neural networks for nonlinear unsteady aerodynamic reduced-order modeling. Aerospace Science and Technology, 2017, 67, 309-326.	4.8	52
23	The lowest Reynolds number of vortex-induced vibrations. Physics of Fluids, 2017, 29, .	4.0	56
24	An improved criterion to select dominant modes from dynamic mode decomposition. European Journal of Mechanics, B/Fluids, 2017, 62, 109-129.	2.5	165
25	Reduced-order thrust modeling for an efficiently flapping airfoil using system identification method. Journal of Fluids and Structures, 2017, 69, 137-153.	3.4	25
26	Active control of transonic buffet flow. Journal of Fluid Mechanics, 2017, 824, 312-351.	3.4	57
27	Layered reduced-order models for nonlinear aerodynamics and aeroelasticity. Journal of Fluids and Structures, 2017, 68, 174-193.	3.4	40
28	Nonlinear Aerodynamic Reduced-Order Model for Limit-Cycle Oscillation and Flutter. AIAA Journal, 2016, 54, 3304-3311.	2.6	39
29	Novel Wiener models with a time-delayed nonlinear block and their identification. Nonlinear Dynamics, 2016, 85, 2389-2404.	5.2	47
30	An approach to enhance the generalization capability of nonlinear aerodynamic reduced-order models. Aerospace Science and Technology, 2016, 49, 197-208.	4.8	37
31	Improved Mode Multigrid Method for Accelerating Turbulence Flows. AIAA Journal, 0, , 1-13.	2.6	1