
Giorgio A Ascoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2856951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience, 2008, 9, 557-568.	10.2	1,314
2	New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 2013, 14, 202-216.	10.2	707
3	NeuroMorpho.Org: A Central Resource for Neuronal Morphologies. Journal of Neuroscience, 2007, 27, 9247-9251.	3.6	618
4	L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 2008, 3, 866-876.	12.0	324
5	A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598, 86-102.	27.8	316
6	Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nature Reviews Neuroscience, 2006, 7, 318-324.	10.2	211
7	BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images. Neuron, 2015, 87, 252-256.	8.1	202
8	Neuronal Morphology Goes Digital: A Research Hub for Cellular and System Neuroscience. Neuron, 2013, 77, 1017-1038.	8.1	191
9	The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience. Neuroinformatics, 2008, 6, 149-160.	2.8	189
10	A community-based transcriptomics classification and nomenclature of neocortical cell types. Nature Neuroscience, 2020, 23, 1456-1468.	14.8	183
11	Drug binding to human serum albumin: Abridged review of results obtained with high-performance liquid chromatography and circular dichroism. Chirality, 2006, 18, 667-679.	2.6	142
12	Neuromantic – from Semi-Manual to Semi-Automatic Reconstruction of Neuron Morphology. Frontiers in Neuroinformatics, 2012, 6, 4.	2.5	141
13	Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Research, 2002, 941, 11-28.	2.2	140
14	Automated reconstruction of neuronal morphology: An overview. Brain Research Reviews, 2011, 67, 94-102.	9.0	135
15	The NIFSTD and BIRNLex Vocabularies: Building Comprehensive Ontologies for Neuroscience. Neuroinformatics, 2008, 6, 175-194.	2.8	130
16	The DIADEM Data Sets: Representative Light Microscopy Images of Neuronal Morphology to Advance Automation of Digital Reconstructions. Neuroinformatics, 2011, 9, 143-157.	2.8	128
17	Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus. ELife, 2015, 4, .	6.0	127
18	Digital Reconstructions of Neuronal Morphology: Three Decades of Research Trends. Frontiers in Neuroscience, 2012, 6, 49.	2.8	117

#	Article	IF	CITATIONS
19	Cellular anatomy of the mouse primary motor cortex. Nature, 2021, 598, 159-166.	27.8	117
20	Generation, description and storage of dendritic morphology data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1131-1145.	4.0	110
21	L-neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 2000, 32-33, 1003-1011.	5.9	109
22	Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus, 2008, 18, 411-424.	1.9	109
23	Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis. Nature Communications, 2014, 5, 4342.	12.8	109
24	Weighing the Evidence in Peters' Rule: Does Neuronal Morphology Predict Connectivity?. Trends in Neurosciences, 2017, 40, 63-71.	8.6	92
25	The DIADEM Metric: Comparing Multiple Reconstructions of the Same Neuron. Neuroinformatics, 2011, 9, 233-245.	2.8	91
26	Towards the automatic classification of neurons. Trends in Neurosciences, 2015, 38, 307-318.	8.6	90
27	Digital reconstruction and morphometric analysis of human brain arterial vasculature from magnetic resonance angiography. NeuroImage, 2013, 82, 170-181.	4.2	88
28	Computer generation and quantitative morphometric analysis of virtual neurons. Anatomy and Embryology, 2001, 204, 283-301.	1.5	86
29	Signal Propagation in Oblique Dendrites of CA1 Pyramidal Cells. Journal of Neurophysiology, 2005, 94, 4145-4155.	1.8	84
30	From DIADEM to BigNeuron. Neuroinformatics, 2015, 13, 259-260.	2.8	82
31	Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories. Journal of Comparative Neurology, 2004, 473, 177-193.	1.6	79
32	Towards Effective and Rewarding Data Sharing. Neuroinformatics, 2003, 1, 289-296.	2.8	78
33	A simple neural network model of the hippocampus suggesting its pathfinding role in episodic memory retrieval. Learning and Memory, 2005, 12, 193-208.	1.3	78
34	Functional Impact of Dendritic Branch-Point Morphology. Journal of Neuroscience, 2013, 33, 2156-2165.	3.6	78
35	A Commitment to Open Source in Neuroscience. Neuron, 2017, 96, 964-965.	8.1	77
36	Win–win data sharing in neuroscience. Nature Methods, 2017, 14, 112-116.	19.0	75

#	Article	IF	CITATIONS
37	Automatic tracing of ultra-volumes of neuronal images. Nature Methods, 2017, 14, 332-333.	19.0	75
38	Feed-forward inhibition as a buffer of the neuronal input-output relation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18004-18009.	7.1	74
39	Local Control of Postinhibitory Rebound Spiking in CA1 Pyramidal Neuron Dendrites. Journal of Neuroscience, 2010, 30, 6434-6442.	3.6	72
40	An open repository for single-cell reconstructions of the brain forest. Scientific Data, 2018, 5, 180006.	5.3	71
41	NeuroMorpho.Org Implementation of Digital Neuroscience: Dense Coverage and Integration with the NIF. Neuroinformatics, 2008, 6, 241-52.	2.8	64
42	Connectivity characterization of the mouse basolateral amygdalar complex. Nature Communications, 2021, 12, 2859.	12.8	63
43	Progress and perspectives in computational neuroanatomy. , 1999, 257, 195-207.		62
44	Morphological homeostasis in cortical dendrites. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1569-1574.	7.1	62
45	Organization of the inputs and outputs of the mouse superior colliculus. Nature Communications, 2021, 12, 4004.	12.8	61
46	Quantifying neuronal size: Summing up trees and splitting the branch difference. Seminars in Cell and Developmental Biology, 2008, 19, 485-493.	5.0	60
47	A Comparative Computer Simulation of Dendritic Morphology. PLoS Computational Biology, 2008, 4, e1000089.	3.2	60
48	Dendritic Excitability and Neuronal Morphology as Determinants of Synaptic Efficacy. Journal of Neurophysiology, 2009, 101, 1847-1866.	1.8	56
49	Metrics for comparing neuronal tree shapes based on persistent homology. PLoS ONE, 2017, 12, e0182184.	2.5	56
50	Statistical analysis and data mining of digital reconstructions of dendritic morphologies. Frontiers in Neuroanatomy, 2014, 8, 138.	1.7	53
51	A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. BioSystems, 2002, 67, 129-137.	2.0	51
52	Axonal morphometry of hippocampal pyramidal neurons semi-automatically reconstructed after in vivo labeling in different CA3 locations. Brain Structure and Function, 2011, 216, 1-15.	2.3	51
53	Genetic Single Neuron Anatomy Reveals Fine Granularity of Cortical Axo-Axonic Cells. Cell Reports, 2019, 26, 3145-3159.e5.	6.4	51
54	Modulation of hippocampal rhythms by subthreshold electric fields and network topology. Journal of Computational Neuroscience, 2013, 34, 369-389.	1.0	50

#	Article	IF	CITATIONS
55	Statistical determinants of dendritic morphology in hippocampal pyramidal neurons: A hidden Markov model. Hippocampus, 2005, 15, 166-183.	1.9	49
56	Developmental changes in spinal motoneuron dendrites in neonatal mice. Journal of Comparative Neurology, 2005, 483, 304-317.	1.6	49
57	A Cross-Platform Freeware Tool for Digital Reconstruction of Neuronal Arborizations From Image Stacks. Neuroinformatics, 2005, 3, 343-360.	2.8	48
58	Statistical morphological analysis of hippocampal principal neurons indicates cell-specific repulsion of dendrites from their own cell. Journal of Neuroscience Research, 2003, 71, 173-187.	2.9	47
59	An ontological approach to describing neurons and their relationships. Frontiers in Neuroinformatics, 2012, 6, 15.	2.5	45
60	Quantitative Investigations of Axonal and Dendritic Arbors. Neuroscientist, 2015, 21, 241-254.	3.5	44
61	Quantitative firing pattern phenotyping of hippocampal neuron types. Scientific Reports, 2019, 9, 17915.	3.3	44
62	Morphological characterization of electrophysiologically and immunohistochemically identified basal forebrain cholinergic and neuropeptide Y-containing neurons. Brain Structure and Function, 2007, 212, 55-73.	2.3	42
63	Morphometric, geographic, and territorial characterization of brain arterial trees. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 755-766.	2.1	41
64	Dendritic Cytoskeletal Architecture Is Modulated by Combinatorial Transcriptional Regulation in <i>Drosophila melanogaster</i> . Genetics, 2017, 207, 1401-1421.	2.9	39
65	The natural frequency of human prospective memory increases with age Psychology and Aging, 2015, 30, 209-219.	1.6	37
66	Neuroanatomical algorithms for dendritic modelling. Network: Computation in Neural Systems, 2002, 13, 247-260.	3.6	36
67	Quantitative morphometry of electrophysiologically identified CA3b interneurons reveals robust local geometry and distinct cell classes. Journal of Comparative Neurology, 2009, 515, 677-695.	1.6	33
68	The Ups and Downs of Neuroscience Shares. Neuroinformatics, 2006, 4, 213-216.	2.8	31
69	Potential Synaptic Connectivity of Different Neurons onto Pyramidal Cells in a 3D Reconstruction of the Rat Hippocampus. Frontiers in Neuroinformatics, 2011, 5, 5.	2.5	31
70	DIADEMchallenge.Org: A Compendium of Resources Fostering the Continuous Development of Automated Neuronal Reconstruction. Neuroinformatics, 2011, 9, 303-304.	2.8	31
71	Sharing Neuron Data: Carrots, Sticks, and Digital Records. PLoS Biology, 2015, 13, e1002275.	5.6	31
72	Topological characterization of neuronal arbor morphology via sequence representation: II - global alignment. BMC Bioinformatics, 2015, 16, 209.	2.6	31

#	Article	IF	CITATIONS
73	Name-calling in the hippocampus (and beyond): coming to terms with neuron types and properties. Brain Informatics, 2017, 4, 1-12.	3.0	31
74	Morphological determinants of dendritic arborization neurons in Drosophila larva. Brain Structure and Function, 2018, 223, 1107-1120.	2.3	31
75	The importance of metadata to assess information content in digital reconstructions of neuronal morphology. Cell and Tissue Research, 2015, 360, 121-127.	2.9	30
76	Topological characterization of neuronal arbor morphology via sequence representation: I - motif analysis. BMC Bioinformatics, 2015, 16, 216.	2.6	30
77	Design and implementation of multi-signal and time-varying neural reconstructions. Scientific Data, 2018, 5, 170207.	5.3	30
78	Scarcity begets addiction. Behavioral and Brain Sciences, 2006, 29, 178-178.	0.7	29
79	Neuron Names: A Gene- and Property-Based Name Format, With Special Reference to Cortical Neurons. Frontiers in Neuroanatomy, 2019, 13, 25.	1.7	29
80	Incorporating anatomically realistic cellular-level connectivity in neural network models of the rat hippocampus. BioSystems, 2005, 79, 173-181.	2.0	28
81	Successes and Rewards in Sharing Digital Reconstructions of Neuronal Morphology. Neuroinformatics, 2007, 5, 154-160.	2.8	28
82	Neuroinformatics Grand Challenges. Neuroinformatics, 2008, 6, 1-3.	2.8	28
83	Principal Semantic Components of Language and the Measurement of Meaning. PLoS ONE, 2010, 5, e10921.	2.5	28
84	Computational simulation of the input-output relationship in hippocampal pyramidal cells. Journal of Computational Neuroscience, 2006, 21, 191-209.	1.0	27
85	Non-homogeneous stereological properties of the rat hippocampus from high-resolution 3D serial reconstruction of thin histological sections. Neuroscience, 2012, 205, 91-111.	2.3	27
86	In search of a periodic table of the neurons: Axonalâ€dendritic circuitry as the organizing principle. BioEssays, 2016, 38, 969-976.	2.5	27
87	A secondary working memory challenge preserves primary place strategies despite overtraining. Learning and Memory, 2013, 20, 648-656.	1.3	26
88	An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo. PLoS Biology, 2021, 19, e3001213.	5.6	26
89	Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome. ENeuro, 2016, 3, ENEURO.0205-16.2016.	1.9	26
90	Molecular fingerprinting of principal neurons in the rodent hippocampus: A neuroinformatics approach. Journal of Pharmaceutical and Biomedical Analysis, 2017, 144, 269-278.	2.8	25

#	Article	IF	CITATIONS
91	Algorithmic reconstruction of complete axonal arborizations in rat hippocampal neurons. Neurocomputing, 2005, 65-66, 15-22.	5.9	24
92	The Conscious Self: Ontology, Epistemology and the Mirror Quest. Cortex, 2005, 41, 621-636.	2.4	24
93	Automated image computing reshapes computational neuroscience. BMC Bioinformatics, 2013, 14, 293.	2.6	24
94	Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types. Frontiers in Neuroinformatics, 2018, 12, 8.	2.5	24
95	Cell numbers, distribution, shape, and regional variation throughout the murine hippocampal formation from the adult brain Allen Reference Atlas. Brain Structure and Function, 2019, 224, 2883-2897.	2.3	24
96	Augmenting Weak Semantic Cognitive Maps with an "Abstractness―Dimension. Computational Intelligence and Neuroscience, 2013, 2013, 1-10.	1.7	23
97	Is Neuroscience FAIR? A Call for Collaborative Standardisation of Neuroscience Data. Neuroinformatics, 2022, 20, 507-512.	2.8	23
98	Computational Models of Neuronal Biophysics and the Characterization of Potential Neuropharmacological Targets. Current Medicinal Chemistry, 2008, 15, 2456-2471.	2.4	22
99	Digital Morphometry of Rat Cerebellar Climbing Fibers Reveals Distinct Branch and Bouton Types. Journal of Neuroscience, 2012, 32, 14670-14684.	3.6	22
100	Simple models of quantitative firing phenotypes in hippocampal neurons: Comprehensive coverage of intrinsic diversity. PLoS Computational Biology, 2019, 15, e1007462.	3.2	22
101	Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap. Journal of Neuroscience, 2021, 41, 1665-1683.	3.6	22
102	Neuroinformatics. Scholarpedia Journal, 2015, 10, 1312.	0.3	22
103	Algorithmic Extraction of Morphological Statistics from Electronic Archives of Neuroanatomy. Lecture Notes in Computer Science, 2001, , 30-37.	1.3	21
104	Local Diameter Fully Constrains Dendritic Size in Basal but not Apical Trees of CA1 Pyramidal Neurons. Journal of Computational Neuroscience, 2005, 19, 223-238.	1.0	20
105	A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. Journal of Computational Neuroscience, 2011, 31, 137-158.	1.0	20
106	Older adults report moderately more detailed autobiographical memories. Frontiers in Psychology, 2015, 6, 631.	2.1	20
107	Doubling up on the Fly: NeuroMorpho.Org Meets Big Data. Neuroinformatics, 2015, 13, 127-129.	2.8	20
108	Highlights from the Era of Open Source Web-Based Tools. Journal of Neuroscience, 2021, 41, 927-936.	3.6	19

#	Article	IF	CITATIONS
109	The Central Role of Neuroinformatics in the National Academy of Engineering's Grandest Challenge: Reverse Engineer the Brain. Neuroinformatics, 2009, 7, 1-5.	2.8	18
110	Neuroanatomical algorithms for dendritic modelling. Network: Computation in Neural Systems, 2002, 13, 247-260.	3.6	18
111	Quantitative Measurements of Autobiographical Memory Content. PLoS ONE, 2012, 7, e44809.	2.5	18
112	The NIF LinkOut Broker: A Web Resource to Facilitate Federated Data Integration using NCBI Identifiers. Neuroinformatics, 2008, 6, 219-227.	2.8	17
113	Passive and active shaping of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. Journal of Computational Neuroscience, 2011, 31, 159-182.	1.0	17
114	A comprehensive knowledge base of synaptic electrophysiology in the rodent hippocampal formation. Hippocampus, 2020, 30, 314-331.	1.9	16
115	Reconstruction of brain networks by algorithmic amplification of morphometry data. Lecture Notes in Computer Science, 1999, , 25-33.	1.3	15
116	Distinct Relations of Microtubules and Actin Filaments with Dendritic Architecture. IScience, 2020, 23, 101865.	4.1	15
117	Quantitative neuronal morphometry by supervised and unsupervised learning. STAR Protocols, 2021, 2, 100867.	1.2	15
118	An open-source framework for neuroscience metadata management applied to digital reconstructions of neuronal morphology. Brain Informatics, 2020, 7, 2.	3.0	15
119	Neuroanatomical algorithms for dendritic modelling. Network: Computation in Neural Systems, 2002, 13, 247-60.	3.6	15
120	An Information Science Infrastructure for Neuroscience. Neuroinformatics, 2003, 1, 001-002.	2.8	14
121	Passive dendritic integration heavily affects spiking dynamics of recurrent networks. Neural Networks, 2003, 16, 657-663.	5.9	14
122	Value Added by Data Sharing: Long-Term Potentiation of Neuroscience Research. Neuroinformatics, 2007, 5, 143-145.	2.8	14
123	Toward a semantic general theory of everything. Complexity, 2010, 15, 12-18.	1.6	14
124	The Coming of Age of the Hippocampome. Neuroinformatics, 2010, 8, 1-3.	2.8	14
125	Differential Arc expression in the hippocampus and striatum during the transition from attentive to automatic navigation on a plus maze. Neurobiology of Learning and Memory, 2016, 131, 36-45.	1.9	14
126	PaperBot: open-source web-based search and metadata organization of scientific literature. BMC Bioinformatics, 2019, 20, 50.	2.6	14

#	Article	IF	CITATIONS
127	Neurochemical Markers in the Mammalian Brain: Structure, Roles in Synaptic Communication, and Pharmacological Relevance. Current Medicinal Chemistry, 2017, 24, 3077-3103.	2.4	14
128	Petabyte-Scale Multi-Morphometry of Single Neurons for Whole Brains. Neuroinformatics, 2022, 20, 525-536.	2.8	14
129	Relation between neuronal morphology and electrophysiology in the Kainate lesion model of Alzheimer's Disease. Neurocomputing, 2001, 38-40, 1477-1487.	5.9	13
130	Molecular expression profiles of morphologically defined hippocampal neuron types: Empirical evidence and relational inferences. Hippocampus, 2020, 30, 472-487.	1.9	13
131	Generation and Description of Neuronal Morphology Using L-Neuron: A Case Study. , 0, , 49-70.		13
132	Science of the Conscious Mind. Biological Bulletin, 2008, 215, 204-215.	1.8	12
133	Communication Structure of Cortical Networks. Frontiers in Computational Neuroscience, 2011, 5, 6.	2.1	12
134	Formin 3 directs dendritic architecture via microtubule regulation and is required for somatosensory nociceptive behavior. Development (Cambridge), 2021, 148, .	2.5	12
135	On the Future of the Human Brain Project. Neuroinformatics, 2006, 4, 129-130.	2.8	11
136	Effects of Synaptic Synchrony on the Neuronal Input-Output Relationship. Neural Computation, 2008, 20, 1717-1731.	2.2	11
137	An ontology-based search engine for digital reconstructions of neuronal morphology. Brain Informatics, 2017, 4, 123-134.	3.0	11
138	A neuronal blueprint for directional mechanosensation in larval zebrafish. Current Biology, 2021, 31, 1463-1475.e6.	3.9	11
139	Efficient metadata mining of web-accessible neural morphologies. Progress in Biophysics and Molecular Biology, 2022, 168, 94-102.	2.9	10
140	An imaging analysis protocol to trace, quantify, and model multi-signal neuron morphology. STAR Protocols, 2021, 2, 100567.	1.2	10
141	Effects of β-Catenin on Dendritic Morphology and Simulated Firing Patterns in Cultured Hippocampal Neurons. Biological Bulletin, 2006, 211, 31-43.	1.8	9
142	Distinct and synergistic feedforward inhibition of pyramidal cells by basket and bistratified interneurons. Frontiers in Cellular Neuroscience, 2015, 9, 439.	3.7	9
143	Structural Plasticity in Dendrites: Developmental Neurogenetics, Morphological Reconstructions, and Computational Modeling. Contemporary Clinical Neuroscience, 2017, , 1-34.	0.3	9
144	Operations research methods for estimating the population size of neuron types. Annals of Operations Research, 2020, 289, 33-50.	4.1	9

#	Article	IF	CITATIONS
145	Robust Resting-State Dynamics in a Large-Scale Spiking Neural Network Model of Area CA3 in the Mouse Hippocampus. Cognitive Computation, 2023, 15, 1190-1210.	5.2	9
146	Looking Forward to Open Access. Neuroinformatics, 2005, 3, 001-004.	2.8	8
147	Algorithmic description of hippocampal granule cell dendritic morphology. Neurocomputing, 2005, 65-66, 253-260.	5.9	8
148	Biomedical research funding: when the game gets tough, winners start to play. BioEssays, 2007, 29, 933-936.	2.5	8
149	Global Neuroscience: Distributing the Management of Brain Knowledge Worldwide. Neuroinformatics, 2013, 11, 1-3.	2.8	8
150	Large scale similarity search across digital reconstructions of neural morphology. Neuroscience Research, 2022, 181, 39-45.	1.9	8
151	A real-scale anatomical model of the dentate gyrus based on single cell reconstructions and 3D rendering of a brain atlas. Neurocomputing, 2002, 44-46, 629-634.	5.9	7
152	Next Steps in Data Publishing. Neuroinformatics, 2011, 9, 317-320.	2.8	7
153	A Community Spring For Neuroscience Data Sharing. Neuroinformatics, 2014, 12, 509-511.	2.8	7
154	BEAN: Interpretable and Efficient Learning With Biologically-Enhanced Artificial Neuronal Assembly Regularization. Frontiers in Neurorobotics, 2021, 15, 567482.	2.8	7
155	A Method for Estimating the Potential Synaptic Connections Between Axons and Dendrites From 2D Neuronal Images. Bio-protocol, 2021, 11, e4073.	0.4	7
156	Explorers of the cells: Toward cross-platform knowledge integration to evaluate neuronal function. Neuron, 2021, 109, 3535-3537.	8.1	7
157	The complex link between neuroanatomy and consciousness. Complexity, 2000, 6, 20-26.	1.6	6
158	Review of Papers Describing Neuroinformatics Software. Neuroinformatics, 2009, 7, 211-212.	2.8	6
159	Twenty Questions for Neuroscience Metadata. Neuroinformatics, 2012, 10, 115-117.	2.8	6
160	The Mind-Brain Relationship as a Mathematical Problem. ISRN Neuroscience, 2013, 2013, 1-13.	1.5	6
161	Turning the Tide of Data Sharing. Neuroinformatics, 2019, 17, 473-474.	2.8	6
162	Spiking neural networks and hippocampal function: A web-accessible survey of simulations, modeling methods, and underlying theories. Cognitive Systems Research, 2021, 70, 80-92.	2.7	6

#	Article	IF	CITATIONS
163	Practical Aspects in Anatomically Accurate Simulations of Neuronal Electrophysiology. , 0, , 127-148.		6
164	Normalized unitary synaptic signaling of the hippocampus and entorhinal cortex predicted by deep learning of experimental recordings. Communications Biology, 2022, 5, 418.	4.4	6
165	Brain and Mind at the Crossroad of Time. Cortex, 2005, 41, 619-620.	2.4	5
166	Connecting Connectomes. Neuroinformatics, 2013, 11, 389-392.	2.8	5
167	A Neural Mechanism for Background Information-Gated Learning Based on Axonal-Dendritic Overlaps. PLoS Computational Biology, 2015, 11, e1004155.	3.2	5
168	Neuronal classification from network connectivity via adjacency spectral embedding. Network Neuroscience, 2021, 5, 1-22.	2.6	5
169	Is it already time to give up on a science of consciousness?. Complexity, 1999, 5, 25-34.	1.6	4
170	Universal Dimensions of Meaning Derived from Semantic Relations among Words and Senses: Mereological Completeness vs. Ontological Generality. Computation, 2014, 2, 61-82.	2.0	4
171	Neurocognitive models of sense-making. Biologically Inspired Cognitive Architectures, 2014, 8, 82-89.	0.9	4
172	Itinerant complexity in networks of intrinsically bursting neurons. Chaos, 2020, 30, 061106.	2.5	4
173	Schematic memory persistence and transience for efficient and robust continual learning. Neural Networks, 2021, 144, 49-60.	5.9	4
174	Neuron and Network Modeling. , 2006, , 604-630.		4
175	Quantification of neuron types in the rodent hippocampal formation by data mining and numerical optimization. European Journal of Neuroscience, 2022, 55, 1724-1741.	2.6	4
176	Self-sustaining non-repetitive activity in a large scale neuronal-level model of the hippocampal circuit. Neural Networks, 2008, 21, 1153-1163.	5.9	3
177	Potential connectomics complements the endeavour of â€~no synapse left behind' in the cortex. Journal of Physiology, 2012, 590, 651-652.	2.9	3
178	Systematic Data Mining of Hippocampal Synaptic Properties. Springer Series in Computational Neuroscience, 2018, , 441-471.	0.3	3
179	Computing the Brain and the Computing Brain. , 0, , 03-24.		3
180	CA3 Cells: Detailed and Simplified Pyramidal Cell Models. , 2010, , 353-374.		3

CA3 Cells: Detailed and Simplified Pyramidal Cell Models. , 2010, , 353-374. 180

#	Article	IF	CITATIONS
181	From data to knowledge. Neuroinformatics, 2003, 1, 145-147.	2.8	2
182	Tracking the Source of Quantitative Knowledge in Neuroscience: A Neuroinformatics Role for Computational Models. Neuroinformatics, 2011, 9, 1-2.	2.8	2
183	On Synaptic Circuits, Memory, and Kumquats. New England Journal of Medicine, 2015, 373, 1170-1172.	27.0	2
184	Computational Modeling as a Means to Defining Neuronal Spike Pattern Behaviors. Springer INdAM Series, 2017, , 25-43.	0.5	2
185	Computational Neuroanatomy of the Rat Hippocampus. , 2008, , 71-VII.		2
186	Measuring and Modeling Morphology: How Dendrites Take Shape. , 2012, , 387-427.		1
187	On the Data-Driven Road from Neurology to Neuronomy. Neuroinformatics, 2016, 14, 251-252.	2.8	1
188	Training for Data Science: Imagine There's no Countries. Neuroinformatics, 2017, 15, 301-302.	2.8	1
189	The ups and downs of neuroscience shares. , 2006, 4, 213.		1
190	NeuroMorpho.org. , 2014, , 1-3.		1
191	Sizing up whole-brain neuronal tracing. Science Bulletin, 2022, 67, 883-884.	9.0	1
192	Successful grant fishing in funding droughts. Nature Cell Biology, 2007, 9, 856-857.	10.3	0
193	Times of Change, Times of Growth. Neuroinformatics, 2007, 5, 95-95.	2.8	0
194	Self-sustaining non-repetitive activity in a large scale neuronal-level model of the hippocampal circuit. BMC Neuroscience, 2008, 9, .	1.9	0
195	Electric field modulation of theta and gamma rhythms: probe into network connectivity. BMC Neuroscience, 2008, 9, .	1.9	0
196	New insights on vertebrate olivo-cerebellar climbing fibers from computerized morphological reconstructions. Bioarchitecture, 2013, 3, 38-41.	1.5	0
197	Neuroinformatics in the Time of Coronavirus. Neuroinformatics, 2020, 18, 337-338.	2.8	0
198	Web-Based Neuronal Archives. , 2003, , 81-97.		0

#	Article	IF	CITATIONS
199	NeuroMorpho.Org. , 2014, , 1-4.		Ο
200	Hippocampome.org. , 2019, , 1-2.		0
201	Farewell, Neuroinformatics!. Neuroinformatics, 2021, 19, 551-552.	2.8	Ο
202	NeuroMorpho.org. , 2022, , 2346-2347.		0
203	Hippocampome.org. , 2022, , 1588-1589.		0