
Christian S Hinrichs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/285671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient with Epithelial Cancer. Science, 2014, 344, 641-645.	12.6	1,460
2	Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nature Medicine, 2009, 15, 808-813.	30.7	839
3	Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood, 2008, 112, 362-373.	1.4	719
4	Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. Journal of Experimental Medicine, 2005, 201, 139-148.	8.5	636
5	Complete Regression of Metastatic Cervical Cancer After Treatment With Human Papillomavirus–Targeted Tumor-Infiltrating T Cells. Journal of Clinical Oncology, 2015, 33, 1543-1550.	1.6	513
6	Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. Journal of Clinical Investigation, 2007, 117, 2197-2204.	8.2	456
7	Exploiting the curative potential of adoptive Tâ€cell therapy for cancer. Immunological Reviews, 2014, 257, 56-71.	6.0	422
8	IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood, 2008, 111, 5326-5333.	1.4	380
9	Adoptively transferred effector cells derived from naÃ ⁻ ve rather than central memory CD8 ⁺ T cells mediate superior antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17469-17474.	7.1	348
10	Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science, 2017, 356, 200-205.	12.6	327
11	Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood, 2011, 117, 808-814.	1.4	272
12	Determinants of Successful CD8+ T-Cell Adoptive Immunotherapy for Large Established Tumors in Mice. Clinical Cancer Research, 2011, 17, 5343-5352.	7.0	247
13	Type 17 CD8+ T cells display enhanced antitumor immunity. Blood, 2009, 114, 596-599.	1.4	196
14	Reassessing target antigens for adoptive T-cell therapy. Nature Biotechnology, 2013, 31, 999-1008.	17.5	181
15	A Phase II Study of Tumor-infiltrating Lymphocyte Therapy for Human Papillomavirus–associated Epithelial Cancers. Clinical Cancer Research, 2019, 25, 1486-1493.	7.0	174
16	T-Cell Receptor Gene Therapy for Human Papillomavirus–Associated Epithelial Cancers: A First-in-Human, Phase I/II Study. Journal of Clinical Oncology, 2019, 37, 2759-2768.	1.6	169
17	TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nature Medicine, 2021, 27, 419-425.	30.7	156
18	Targeting of HPV-16+ Epithelial Cancer Cells by TCR Gene Engineered T Cells Directed against E6. Clinical Cancer Research, 2015, 21, 4431-4439.	7.0	147

#	Article	IF	CITATIONS
19	Lymphedema Secondary to Postmastectomy Radiation: Incidence and Risk Factors. Annals of Surgical Oncology, 2004, 11, 573-580.	1.5	135
20	Toll-like Receptors in Tumor Immunotherapy. Clinical Cancer Research, 2007, 13, 5280-5289.	7.0	114
21	Effective tumor treatment targeting a melanoma/melanocyte-associated antigen triggers severe ocular autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8061-8066.	7.1	114
22	Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight, 2018, 3, .	5.0	110
23	Interleukin-2-Dependent Mechanisms of Tolerance and Immunity In Vivo. Journal of Immunology, 2006, 176, 5255-5266.	0.8	109
24	Phenotype and Function of T Cells Infiltrating Visceral Metastases from Gastrointestinal Cancers and Melanoma: Implications for Adoptive Cell Transfer Therapy. Journal of Immunology, 2013, 191, 2217-2225.	0.8	89
25	Genetic Engineering of Murine CD8+ and CD4+ T Cells for Preclinical Adoptive Immunotherapy Studies. Journal of Immunotherapy, 2011, 34, 343-352.	2.4	80
26	A High Molecular Weight Melanoma-Associated Antigen–Specific Chimeric Antigen Receptor Redirects Lymphocytes to Target Human Melanomas. Cancer Research, 2010, 70, 3027-3033.	0.9	70
27	Circulating Cell-free DNA for Metastatic Cervical Cancer Detection, Genotyping, and Monitoring. Clinical Cancer Research, 2017, 23, 6856-6862.	7.0	70
28	Programming CD8+ T cells for effective immunotherapy. Current Opinion in Immunology, 2006, 18, 363-370.	5.5	61
29	Glucocorticoids Do Not Inhibit Antitumor Activity of Activated CD8+ T Cells. Journal of Immunotherapy, 2005, 28, 517-524.	2.4	57
30	Bedside to bench and back again: how animal models are guiding the development of new immunotherapies for cancer. Journal of Leukocyte Biology, 2004, 76, 333-337.	3.3	43
31	Adoptive transfer of allogeneic tumor-specific T cells mediates effective regression of large tumors across major histocompatibility barriers. Blood, 2008, 112, 4746-4754.	1.4	39
32	Enhanced clinical-scale manufacturing of TCR transduced T-cells using closed culture system modules. Journal of Translational Medicine, 2018, 16, 13.	4.4	35
33	Safety and clinical activity of PD-L1 blockade in patients with aggressive recurrent respiratory papillomatosis. , 2019, 7, 119.		35
34	The effectiveness of complete decongestive physiotherapy for the treatment of lymphedema following groin dissection for melanoma. Journal of Surgical Oncology, 2004, 85, 187-192.	1.7	32
35	Molecular Pathways: Breaking the Epithelial Cancer Barrier for Chimeric Antigen Receptor and T-cell Receptor Gene Therapy. Clinical Cancer Research, 2016, 22, 1559-1564.	7.0	28
36	Cancer targeting by TCR gene-engineered T cells directed against Kita-Kyushu Lung Cancer Antigen-1. , 2019, 7, 229.		27

CHRISTIAN S HINRICHS

#	Article	IF	CITATIONS
37	Enhanced efficacy and limited systemic cytokine exposure with membrane-anchored interleukin-12 T-cell therapy in murine tumor models. , 2020, 8, e000210.		27
38	A phase I/II clinical trial of E6 T-cell receptor gene therapy for human papillomavirus (HPV)-associated epithelial cancers Journal of Clinical Oncology, 2017, 35, 3009-3009.	1.6	24
39	Regression of epithelial cancers in humans following t-cell receptor gene therapy targeting human papillomavirus-16 E7 Journal of Clinical Oncology, 2018, 36, 3043-3043.	1.6	22
40	Chimeric antigen receptor engineered NK cellular immunotherapy overcomes the selection of T-cell escape variant cancer cells. , 2021, 9, e002128.		20
41	Dual PD-L1 and TGF-b blockade in patients with recurrent respiratory papillomatosis. , 2021, 9, e003113.		12
42	Comprehensive multiomic characterization of human papillomavirus-driven recurrent respiratory papillomatosis reveals distinct molecular subtypes. Communications Biology, 2021, 4, 1416.	4.4	10
43	Advances in Adoptive Cell Therapy for Head and Neck Cancer. Otolaryngologic Clinics of North America, 2021, 54, 761-768.	1.1	9
44	Regression of Epithelial Cancers Following T Cell Receptor Gene Therapy Targeting Human Papillomavirus-16 E7. Blood, 2018, 132, 492-492.	1.4	9
45	HPV-targeted tumor-infiltrating lymphocytes for cervical cancer Journal of Clinical Oncology, 2014, 32, LBA3008-LBA3008.	1.6	9
46	Human Papillomavirus T-Cell Cross-reactivity in Cervical Cancer. JAMA Network Open, 2018, 1, e180706.	5.9	5
47	Determining if T cell antigens are naturally processed and presented on HLA class I molecules. BMC Immunology, 2022, 23, 5.	2.2	4
48	Can interleukin-15 keep its therapeutic promise?. Science Translational Medicine, 2018, 10, .	12.4	3
49	Cell-based molecularly targeted therapy: targeting oncoproteins with T cell receptor gene therapy. Journal of Clinical Investigation, 2018, 128, 1261-1263.	8.2	3
50	Self-defeating CAR-Ts protect leukemic cells. Science Translational Medicine, 2018, 10, .	12.4	2
51	Durable response in a patient with recurrent respiratory papillomatosis treated with immune checkpoint blockade. Head and Neck, 2022, 44, .	2.0	2
52	Abstract CT003: A phase I study of an HLA-DPB1*0401-restricted T-cell receptor targeting MAGE-A3 for patients with metastatic cancer. , 2016, , .		0
53	Gene transfer delivers (Î ² -globin). Science Translational Medicine, 2018, 10, .	12.4	0
54	The hidden agenda for immune escape in colorectal cancer. Science Translational Medicine, 2018, 10, .	12.4	0

#	Article	IF	CITATIONS
55	Abstract 1581: Circulating cell-free DNA for metastatic cervical cancer detection, genotyping and monitoring. , 2018, , .		0
56	T cell receptors communicate by movement. Science Translational Medicine, 2018, 10, .	12.4	0
57	A killer sidekick for antitumor T cells. Science Translational Medicine, 2019, 11, .	12.4	Ο