## Spencer V Nyholm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/285628/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization. Nature Communications, 2022, 13, 2172.                                                         | 12.8 | 21        |
| 2  | A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nature Reviews Microbiology, 2021, 19, 666-679.                                              | 28.6 | 72        |
| 3  | Hawaiian Bobtail Squid Symbionts Inhibit Marine Bacteria via Production of Specialized Metabolites,<br>Including New Bromoalterochromides BAC-D/D′. MSphere, 2020, 5, .                                | 2.9  | 18        |
| 4  | In the beginning: egg–microbe interactions and consequences for animal hosts. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190593.                          | 4.0  | 40        |
| 5  | Ambient pH Alters the Protein Content of Outer Membrane Vesicles, Driving Host Development in a<br>Beneficial Symbiosis. Journal of Bacteriology, 2019, 201, .                                         | 2.2  | 31        |
| 6  | Symbiotic organs shaped by distinct modes of genome evolution in cephalopods. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3030-3035.                   | 7.1  | 123       |
| 7  | Persistent symbiont colonization leads to a maturation of hemocyte response in the <i>Euprymna scolopes</i> / <i>Vibrio fischeri</i> symbiosis. MicrobiologyOpen, 2019, 8, e858.                       | 3.0  | 9         |
| 8  | Shielding the Next Generation: Symbiotic Bacteria from a Reproductive Organ Protect Bobtail Squid<br>Eggs from Fungal Fouling. MBio, 2019, 10, .                                                       | 4.1  | 30        |
| 9  | Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment. ELife, 2019, 8, .                                                                   | 6.0  | 23        |
| 10 | Reproductive System Symbiotic Bacteria Are Conserved between Two Distinct Populations of<br><i>Euprymna scolopes</i> from Oahu, Hawaii. MSphere, 2018, 3, .                                            | 2.9  | 12        |
| 11 | Symbiotic bacteria associated with a bobtail squid reproductive system are detectable in the environment, and stable in the host and developing eggs. Environmental Microbiology, 2017, 19, 1463-1475. | 3.8  | 38        |
| 12 | Leisingera sp. JC1, a Bacterial Isolate from Hawaiian Bobtail Squid Eggs, Produces Indigoidine and<br>Differentially Inhibits Vibrios. Frontiers in Microbiology, 2016, 7, 1342.                       | 3.5  | 70        |
| 13 | The Role of Hemocytes in the Hawaiian Bobtail Squid, Euprymna scolopes: A Model Organism for<br>Studying Beneficial Host–Microbe Interactions. Frontiers in Microbiology, 2016, 7, 2013.               | 3.5  | 23        |
| 14 | Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes. Frontiers in Microbiology, 2015, 6, 123.                                         | 3.5  | 37        |
| 15 | Colonization State Influences the Hemocyte Proteome in a Beneficial Squid–Vibrio Symbiosis.<br>Molecular and Cellular Proteomics, 2014, 13, 2673-2686.                                                 | 3.8  | 32        |
| 16 | Understanding the Role of Host Hemocytes in a Squid/Vibrio Symbiosis Using Transcriptomics and Proteomics. Frontiers in Immunology, 2012, 3, 91.                                                       | 4.8  | 56        |
| 17 | Diversity and Partitioning of Bacterial Populations within the Accessory Nidamental Gland of the Squid Euprymna scolopes. Applied and Environmental Microbiology, 2012, 78, 4200-4208.                 | 3.1  | 65        |
| 18 | Knowing your friends: invertebrate innate immunity fosters beneficial bacterial symbioses. Nature<br>Reviews Microbiology, 2012, 10, 815-827.                                                          | 28.6 | 186       |

Spencer V Nyholm

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Expression and Putative Function of Innate Immunity Genes under in situ Conditions in the Symbiotic<br>Hydrothermal Vent Tubeworm Ridgeia piscesae. PLoS ONE, 2012, 7, e38267.                                                                         | 2.5  | 19        |
| 20 | Characterizing the Host and Symbiont Proteomes in the Association between the Bobtail Squid,<br>Euprymna scolopes, and the Bacterium, Vibrio fischeri. PLoS ONE, 2011, 6, e25649.                                                                      | 2.5  | 44        |
| 21 | Draft Genome of Phaeobacter gallaeciensis ANG1, a Dominant Member of the Accessory Nidamental Gland of Euprymna scolopes. Journal of Bacteriology, 2011, 193, 3397-3398.                                                                               | 2.2  | 12        |
| 22 | Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and<br>metabolic change in a beneficial symbiosis. Proceedings of the National Academy of Sciences of the<br>United States of America, 2010, 107, 2259-2264. | 7.1  | 149       |
| 23 | The role of the immune system in the initiation and persistence of the Euprymna scolopes–Vibrio<br>fischeri symbiosis. Seminars in Immunology, 2010, 22, 48-53.                                                                                        | 5.6  | 89        |
| 24 | Recognition between symbiotic <i>Vibrio fischeri</i> and the haemocytes of <i>Euprymna scolopes</i> .<br>Environmental Microbiology, 2009, 11, 483-493.                                                                                                | 3.8  | 124       |
| 25 | Coupling Metabolite Flux to Transcriptomics: Insights Into the Molecular Mechanisms Underlying<br>Primary Productivity by the Hydrothermal Vent Tubeworm <i>Ridgeia piscesae</i> . Biological Bulletin,<br>2008, 214, 255-265.                         | 1.8  | 23        |
| 26 | The winnowing: establishing the squid–vibrio symbiosis. Nature Reviews Microbiology, 2004, 2,<br>632-642.                                                                                                                                              | 28.6 | 689       |
| 27 | Roles of Vibrio fischeri and Nonsymbiotic Bacteria in the Dynamics of Mucus Secretion during<br>Symbiont Colonization of the Euprymna scolopes Light Organ. Applied and Environmental<br>Microbiology, 2002, 68, 5113-5122.                            | 3.1  | 112       |