Sung-Yool Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2855050/publications.pdf

Version: 2024-02-01

168 papers 9,409 citations

50 h-index 93 g-index

173 all docs

173 docs citations

173 times ranked 14187 citing authors

#	Article	IF	CITATIONS
1	Spatially isolated neutral excitons <i>via</i> clusters on trilayer MoS ₂ . Nanoscale, 2022, 14, 4304-4311.	5.6	2
2	Enhanced Electrical Properties of Metalâ€Organic Chemical Vapor Depositionâ€Grown MoS ₂ Thin Films through Oxygenâ€Assisted Defect Control. Advanced Electronic Materials, 2022, 8, .	5.1	4
3	Highly Reliable Synaptic Cell Array Based on Organic–Inorganic Hybrid Bilayer Stack toward Precise Offline Learning. Advanced Intelligent Systems, 2022, 4, .	6.1	4
4	Highly Reliable Synaptic Cell Array Based on Organic–Inorganic Hybrid Bilayer Stack toward Precise Offline Learning. Advanced Intelligent Systems, 2022, 4, .	6.1	1
5	Passivation layer effect on the positive bias temperature instability of molybdenum disulfide thin film transistors. Journal of Information Display, 2021, 22, 13-19.	4.0	3
6	Enhanced Triboelectric Nanogenerator Based on Tungsten Disulfide via Thiolated Ligand Conjugation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 21299-21309.	8.0	25
7	Low-Temperature and High-Quality Growth of Bi ₂ O ₂ Se Layered Semiconductors <i>via</i> Cracking Metal–Organic Chemical Vapor Deposition. ACS Nano, 2021, 15, 8715-8723.	14.6	35
8	Hybrid Gate Dielectric of MoS 2 Transistors for Enhanced Photoâ€Electronic Stability. Advanced Materials Interfaces, 2021, 8, 2100599.	3.7	3
9	Metastable quantum dot for photoelectric devices via flash-induced one-step sequential self-formation. Nano Energy, 2021, 84, 105889.	16.0	6
10	Ultrasensitive WSe ₂ /αâ€n ₂ Se ₃ NIR Photodetector Based on Ferroelectric Gating Effect. Advanced Materials Technologies, 2021, 6, 2100494.	5.8	26
11	Cointegration of single-transistor neurons and synapses by nanoscale CMOS fabrication for highly scalable neuromorphic hardware. Science Advances, 2021, 7, .	10.3	47
12	Atomically thin Schottky junction with a gap-mode plasmon for enhanced photoresponsivity in MoS2-based photodetectors. Journal Physics D: Applied Physics, 2021, 54, 145301.	2.8	6
13	Atomically thin heterostructure with gap-mode plasmon for overcoming trade-off between photoresponsivity and response time. Nano Research, 2021, 14, 1305-1310.	10.4	5
14	A Vertical Silicon Nanowire Based Single Transistor Neuron with Excitatory, Inhibitory, and Myelination Functions for Highly Scalable Neuromorphic Hardware. Small, 2021, 17, e2103775.	10.0	6
15	Wafer-Scale Uniform Growth of an Atomically Thin MoS ₂ Film with Controlled Layer Numbers by Metal–Organic Chemical Vapor Deposition. ACS Applied Materials & South State of	8.0	11
16	A highly smart MEMS acetone gas sensors in array for diet-monitoring applications. Micro and Nano Systems Letters, 2021, 9, .	3.7	4
17	Gapâ€Mode Plasmonâ€Induced Photovoltaic Effect in a Vertical Multilayer Graphene Homojunction. Advanced Optical Materials, 2020, 8, 1901519.	7.3	6
18	Varying electronic coupling at graphene–copper interfaces probed with Raman spectroscopy. 2D Materials, 2020, 7, 025006.	4.4	12

#	Article	IF	Citations
19	Flexible and Transparent Thin-Film Transistors Based on Two-Dimensional Materials for Active-Matrix Display. ACS Applied Materials & Display. ACS ACS Applied Materials & Display. ACS ACS Applied Materials & Display. ACS	8.0	29
20	High-Performance Field-Effect Transistor and Logic Gates Based on GaS–MoS ₂ van der Waals Heterostructure. ACS Applied Materials & Ditterfaces, 2020, 12, 5106-5112.	8.0	17
21	Photoconductivity Switching in MoTe ₂ /Graphene Heterostructure by Trap-Assisted Photogating. ACS Applied Materials &	8.0	30
22	Vertical‶unneling Fieldâ€Effect Transistor Based on WSe ₂ â€MoS ₂ Heterostructure with Ion Gel Dielectric. Advanced Electronic Materials, 2020, 6, 2000091.	5.1	22
23	TFT Channel Materials for Display Applications: From Amorphous Silicon to Transition Metal Dichalcogenides. Advanced Materials, 2020, 32, e1907166.	21.0	58
24	Synthesis of Ultrathin Metal Nanowires with Chemically Exfoliated Tungsten Disulfide Nanosheets. Nano Letters, 2020, 20, 3740-3746.	9.1	15
25	Ultrasensitive Phototransistor Based on WSe ₂ –MoS ₂ van der Waals Heterojunction. Nano Letters, 2020, 20, 5741-5748.	9.1	133
26	ZnO–CuO Core-Hollow Cube Nanostructures for Highly Sensitive Acetone Gas Sensors at the ppb Level. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35688-35697.	8.0	126
27	Lowâ€Thermalâ€Budget Doping of 2D Materials in Ambient Air Exemplified by Synthesis of Boronâ€Doped Reduced Graphene Oxide. Advanced Science, 2020, 7, 1903318.	11.2	12
28	Probing temperature-dependent interlayer coupling in a MoS2/h-BN heterostructure. Nano Research, 2020, 13, 576-582.	10.4	21
29	Conductive-bridging random-access memories for emerging neuromorphic computing. Nanoscale, 2020, 12, 14339-14368.	5.6	46
30	Lowâ€Thermalâ€Budget Doping: Lowâ€Thermalâ€Budget Doping of 2D Materials in Ambient Air Exemplified by Synthesis of Boronâ€Doped Reduced Graphene Oxide (Adv. Sci. 7/2020). Advanced Science, 2020, 7, 2070039.	11.2	0
31	Order-of-Magnitude, Broadband-Enhanced Light Emission from Quantum Dots Assembled in Multiscale Phase-Separated Block Copolymers. Nano Letters, 2019, 19, 6827-6838.	9.1	21
32	A feasible strategy to prepare quantum dot-incorporated carbon nanofibers as free-standing platforms. Nanoscale Advances, 2019, 1, 3948-3956.	4.6	1
33	Nonvolatile Memories Based on Graphene and Related 2D Materials. Advanced Materials, 2019, 31, e1806663.	21.0	230
34	Si–MoS ₂ Vertical Heterojunction for a Photodetector with High Responsivity and Low Noise Equivalent Power. ACS Applied Materials & Samp; Interfaces, 2019, 11, 7626-7634.	8.0	58
35	Bioinspired Polydopamineâ€Based Resistiveâ€Switching Memory on Cotton Fabric for Wearable Neuromorphic Device Applications. Advanced Materials Technologies, 2019, 4, 1900151.	5.8	33
36	Sonochemical synthesis of HKUST-1-based CuO decorated with Pt nanoparticles for formaldehyde gas-sensor applications. Sensors and Actuators B: Chemical, 2019, 292, 289-296.	7.8	47

#	Article	IF	CITATIONS
37	Observation of Wavelength-Dependent Quantum Plasmon Tunneling with Varying the Thickness of Graphene Spacer. Scientific Reports, 2019, 9, 1199.	3.3	13
38	Chemically exfoliated 1T-phase transition metal dichalcogenide nanosheets for transparent antibacterial applications. 2D Materials, 2019, 6, 025025.	4.4	45
39	Largeâ€Scale, Lowâ€Power Nonvolatile Memory Based on Fewâ€Layer MoS ₂ and Ultrathin Polymer Dielectrics. Advanced Electronic Materials, 2019, 5, 1800688.	5.1	23
40	Improved Electrical Contact Properties of MoS ₂ â€Graphene Lateral Heterostructure. Advanced Functional Materials, 2019, 29, 1807550.	14.9	44
41	Polymer Analog Memristive Synapse with Atomic-Scale Conductive Filament for Flexible Neuromorphic Computing System. Nano Letters, 2019, 19, 839-849.	9.1	139
42	Synthesis of Graphene Layers by Inductive Coupled Plasma Enhanced Chemical Vapor Deposition (ICP-CVD) for Application in Optoelectronics. , 2019, , .		0
43	Flexible and Transparent Graphene Electrode Architecture with Selective Defect Decoration for Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1704435.	14.9	67
44	Two-dimensional sheet resistance model for polycrystalline graphene with overlapped grain boundaries. FlatChem, 2018, 7, 19-25.	5.6	7
45	Memristive Logicâ€inâ€Memory Integrated Circuits for Energyâ€Efficient Flexible Electronics. Advanced Functional Materials, 2018, 28, 1704725.	14.9	57
46	Graphene electrode with tunable charge transport in thin-film transistors. Nano Research, 2018, 11, 274-286.	10.4	14
47	A Recoverable Synapse Device Using a Threeâ€Dimensional Silicon Transistor. Advanced Functional Materials, 2018, 28, 1804844.	14.9	34
48	Vertical-Tunnel Field-Effect Transistor Based on a Silicon–MoS2 Three-Dimensional–Two-Dimensional Heterostructure. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 40212-40218.	8.0	34
49	Vertical-tunneling field-effect transistor based on MoTe ₂ /MoS ₂ 2D–2D heterojunction. Journal Physics D: Applied Physics, 2018, 51, 475101.	2.8	26
50	Atomic-scale etching of hexagonal boron nitride for device integration based on two-dimensional materials. Nanoscale, 2018, 10, 15205-15212.	5.6	22
51	Pyridinic-N-Doped Graphene Paper from Perforated Graphene Oxide for Efficient Oxygen Reduction. ACS Omega, 2018, 3, 5522-5530.	3.5	42
52	60â€3: Highâ€Performance MoS ₂ Thinâ€Film Transistors for Flexible OLED display. Digest of Technical Papers SID International Symposium, 2018, 49, 797-799.	0.3	2
53	First Demonstration of a Logic-Process Compatible Junctionless Ferroelectric FinFET Synapse for Neuromorphic Applications. IEEE Electron Device Letters, 2018, 39, 1445-1448.	3.9	121
54	Stretchable thin-film transistors with molybdenum disulfide channels and graphene electrodes. Nanoscale, 2018, 10, 16069-16078.	5.6	23

#	Article	IF	Citations
55	Largeâ€Area CVDâ€Grown MoS ₂ Driver Circuit Array for Flexible Organic Lightâ€Emitting Diode Display. Advanced Electronic Materials, 2018, 4, 1800251.	5.1	39
56	Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition. Scientific Reports, 2017, 7, 40091.	3.3	49
57	Antibacterial Activities of Graphene Oxide–Molybdenum Disulfide Nanocomposite Films. ACS Applied Materials & Interfaces, 2017, 9, 7908-7917.	8.0	150
58	Zero-static-power nonvolatile logic-in-memory circuits for flexible electronics. Nano Research, 2017, 10, 2459-2470.	10.4	39
59	Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition. Journal of Materials Chemistry A, 2017, 5, 14950-14968.	10.3	38
60	Selective protein transport through ultra-thin suspended reduced graphene oxide nanopores. Nanoscale, 2017, 9, 13457-13464.	5.6	17
61	Lowâ€Power Nonvolatile Charge Storage Memory Based on MoS ₂ and an Ultrathin Polymer Tunneling Dielectric. Advanced Functional Materials, 2017, 27, 1703545.	14.9	43
62	Functional Circuitry on Commercial Fabric via Textile-Compatible Nanoscale Film Coating Process for Fibertronics. Nano Letters, 2017, 17, 6443-6452.	9.1	62
63	Comprehensive Study on the Relation Between Low-Frequency Noise and Asymmetric Parasitic Resistances in a Vertical Pillar-Type FET. IEEE Electron Device Letters, 2017, 38, 1008-1011.	3.9	6
64	Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Research, 2017, 10, 255-262.	10.4	92
65	A Lowâ€Voltage Organic Complementary Inverter with High Operation Stability and Flexibility Using an Ultrathin iCVD Polymer Dielectric and a Hybrid Encapsulation Layer. Advanced Electronic Materials, 2016, 2, 1500385.	5.1	29
66	Laser-induced phase separation of silicon carbide. Nature Communications, 2016, 7, 13562.	12.8	75
67	Polymer-free graphene transfer for enhanced reliability of graphene field-effect transistors. 2D Materials, 2016, 3, 021003.	4.4	14
68	Flexible Nonvolatile Polymer Memory Array on Plastic Substrate via Initiated Chemical Vapor Deposition. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12951-12958.	8.0	66
69	Multilevel resistive switching nonvolatile memory based on MoS ₂ nanosheet-embedded graphene oxide. 2D Materials, 2016, 3, 034002.	4.4	69
70	Conductive Graphitic Channel in Graphene Oxideâ€Based Memristive Devices. Advanced Functional Materials, 2016, 26, 7406-7414.	14.9	54
71	Valley-engineered ultra-thin silicon for high-performance junctionless transistors. Scientific Reports, 2016, 6, 29354.	3.3	2
72	Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nature Communications, 2016, 7, 11791.	12.8	163

#	Article	IF	Citations
73	Floating gate memory based on MoS <inf>2</inf> channel and iCVD polymer tunneling dielectric. , 2016, , .		2
74	Memristive Devices: Conductive Graphitic Channel in Graphene Oxide-Based Memristive Devices (Adv.) Tj ETQq0	0 0 rgBT /	Overlock 10
75	Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling. Advanced Functional Materials, 2016, 26, 5093-5101.	14.9	33
76	Friction and conductance imaging of sp ² - and sp ³ -hybridized subdomains on single-layer graphene oxide. Nanoscale, 2016, 8, 4063-4069.	5.6	34
77	Abnormal electrical characteristics of multi-layered MoS ₂ FETs attributed to bulk traps. 2D Materials, 2016, 3, 015007.	4.4	16
78	A Separate Extraction Method for Asymmetric Source and Drain Resistances Using Frequency-Dispersive C-V Characteristics in Exfoliated MoS ₂ FET. IEEE Electron Device Letters, 2016, 37, 231-233.	3.9	7
79	Healing Graphene Defects Using Selective Electrochemical Deposition: Toward Flexible and Stretchable Devices. ACS Nano, 2016, 10, 1539-1545.	14.6	47
80	Self-Supplied Nano-Fusing and Transferring Metal Nanostructures via Surface Oxide Reduction. ACS Applied Materials & Diterfaces, 2016, 8, 1112-1119.	8.0	27
81	DNA-Assisted Exfoliation of Tungsten Dichalcogenides and Their Antibacterial Effect. ACS Applied Materials & Empty Interfaces, 2016, 8, 1943-1950.	8.0	76
82	Graphene and Two-Dimensional Transition Metal Dichalcogenide Materials for Energy-Related Applications. KAIST Research Series, 2016, , 253-291.	1.5	0
83	Improving the Efficiency of Flexible Organic Light-emitting Diodes via Alternating High- and Low-index Layers. , 2016, , .		1
84	Graphene Oxide Memory: Direct Observation of Conducting Nanofilaments in Graphene-Oxide-Resistive Switching Memory (Adv. Funct. Mater. 43/2015). Advanced Functional Materials, 2015, 25, 6694-6694.	14.9	1
85	Direct Observation of Conducting Nanofilaments in Grapheneâ€Oxideâ€Resistive Switching Memory. Advanced Functional Materials, 2015, 25, 6710-6715.	14.9	60
86	Experimental study on quantum mechanical effect for insensitivity of threshold voltage against temperature variation in strained SOI MOSFETs. , 2015 , , .		4
87	Optical Sintering: Improved Optical Sintering Efficiency at the Contacts of Silver Nanowires Encapsulated by a Graphene Layer (Small 11/2015). Small, 2015, 11, 1356-1356.	10.0	1
88	Improved electromigration-resistance of Cu interconnects by graphene-based capping layer., 2015,,.		7
89	Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode. 2D Materials, 2015, 2, 044013.	4.4	21
90	Interface engineering for high performance graphene electronic devices. Nano Convergence, 2015, 2, .	12.1	22

#	Article	IF	CITATIONS
91	Technical issues in graphene anode organic light emitting diodes. Diamond and Related Materials, 2015, 57, 68-73.	3.9	13
92	Improved Optical Sintering Efficiency at the Contacts of Silver Nanowires Encapsulated by a Graphene Layer. Small, 2015, 11, 1293-1300.	10.0	76
93	Metal-Etching-Free Direct Delamination and Transfer of Single-Layer Graphene with a High Degree of Freedom. Small, 2015, 11, 175-181.	10.0	57
94	Flexible Electronics: Flexible and Transparent Gas Molecule Sensor Integrated with Sensing and Heating Graphene Layers (Small 18/2014). Small, 2014, 10, 3812-3812.	10.0	7
95	Scanning transmission X-ray microscopy probe forinÂsitumechanism study of graphene-oxide-based resistive random access memory. Journal of Synchrotron Radiation, 2014, 21, 170-176.	2.4	13
96	High performance graphene field effect transistors on an aluminum nitride substrate with high surface phonon energy. Applied Physics Letters, 2014, 104, 193112.	3.3	18
97	Flexible and Transparent Gas Molecule Sensor Integrated with Sensing and Heating Graphene Layers. Small, 2014, 10, 3685-3691.	10.0	142
98	Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS ₂ Nanosheets. ACS Applied Materials & Samp; Interfaces, 2014, 6, 7084-7089.	8.0	443
99	Carrier injection efficiencies and energy level alignments of multilayer graphene anodes for organic light-emitting diodes with different hole injection layers. Carbon, 2014, 79, 623-630.	10.3	30
100	Large-Area Single-Layer MoSe ₂ and Its van der Waals Heterostructures. ACS Nano, 2014, 8, 6655-6662.	14.6	206
101	Laser-Induced Solid-Phase Doped Graphene. ACS Nano, 2014, 8, 7671-7677.	14.6	48
102	Facile graphene n-doping by wet chemical treatment for electronic applications. Nanoscale, 2014, 6, 8503.	5.6	35
103	Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes. Nanotechnology, 2013, 24, 075202.	2.6	31
104	Doping suppression and mobility enhancement of graphene transistors fabricated using an adhesion promoting dry transfer process. Applied Physics Letters, 2013, 103, .	3.3	13
105	Functionalized Graphene as an Ultrathin Seed Layer for the Atomic Layer Deposition of Conformal High-k Dielectrics on Graphene. ACS Applied Materials & Interfaces, 2013, 5, 11515-11519.	8.0	31
106	Flexible NO ₂ gas sensor using multilayer graphene films by chemical vapor deposition. Carbon Letters, 2013, 14, 186-189.	5.9	40
107	Multilayered graphene anode for blue phosphorescent organic light emitting diodes. Applied Physics Letters, 2012, 100, .	3.3	57
108	Gate-controlled active graphene metamaterials at terahertz frequencies. , 2012, , .		0

#	Article	IF	Citations
109	Multilevel conductance switching for a monolayer of redox-active metal complexes through various metallic contacts. Journal of Materials Chemistry, 2012, 22, 1868-1875.	6.7	13
110	A graphene oxide oxygen barrier film deposited via a self-assembly coating method. Synthetic Metals, 2012, 162, 710-714.	3.9	52
111	Nanoscale contacts between semiconducting nanowires and metallic graphenes. Applied Physics Letters, 2012, 101, 063122.	3.3	12
112	Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Materials, 2012, 11, 936-941.	27.5	777
113	An Electrochemically Reduced Graphene Oxide-Based Electrochemical Immunosensing Platform for Ultrasensitive Antigen Detection. Analytical Chemistry, 2012, 84, 1871-1878.	6.5	168
114	Blue fluorescent organic light emitting diodes with multilayered graphene anode. Materials Research Bulletin, 2012, 47, 2796-2799.	5.2	11
115	Large area organic light emitting diodes with multilayered graphene anodes. Proceedings of SPIE, 2012,	0.8	2
116	Graphene-based photonic devices for soft hybrid optoelectronic systems. Nanotechnology, 2012, 23, 344005.	2.6	15
117	Solutionâ€Processed Reduced Graphene Oxide Films as Electronic Contacts for Molecular Monolayer Junctions. Angewandte Chemie - International Edition, 2012, 51, 108-112.	13.8	59
118	Impedimetric Hg2+Detection on Multilayered Reduced Graphene Oxide-Modified Electrode. Bulletin of the Korean Chemical Society, 2012, 33, 4219-4222.	1.9	5
119	Characterization of chemical vapor deposition-grown graphene films with various etchants. Carbon Letters, 2012, 13, 44-47.	5.9	11
120	Aligned Circular-Type Nanowire Transistors Grown on Multilayer Graphene Film. Journal of Physical Chemistry C, 2011, 115, 22163-22167.	3.1	4
121	Flexible Memristive Memory Array on Plastic Substrates. Nano Letters, 2011, 11, 5438-5442.	9.1	250
122	Graphene-based plasmonic waveguides for photonic integrated circuits. Optics Express, 2011, 19, 24557.	3.4	143
123	Fabrication of TiO ₂ Memristive Arrays by Step and Flash Imprint Lithography. Journal of Nanoscience and Nanotechnology, 2011, 11, 696-700.	0.9	2
124	Critical role of top interface layer on the bipolar resistive switching of Al/PEDOT:PSS/Al memory device. Current Applied Physics, 2011, 11, e35-e39.	2.4	9
125	Impact of amorphous titanium oxide film on the device stability ofÂAI/TiO2/AI resistive memory. Applied Physics A: Materials Science and Processing, 2011, 102, 967-972.	2.3	27
126	Role of Interface Reaction on Resistive Switching of Metal/Amorphous TiO2/Al RRAM Devices. Journal of the Electrochemical Society, 2011, 158, H979.	2.9	53

#	Article	IF	Citations
127	Bipolar resistive switching in amorphous titanium oxide thin film. Physica Status Solidi - Rapid Research Letters, 2010, 4, 28-30.	2.4	55
128	Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Applied Physics Letters, 2010, 96, .	3.3	255
129	Flexible Resistive Switching Memory Device Based on Graphene Oxide. IEEE Electron Device Letters, 2010, 31, 1005-1007.	3.9	145
130	Interfaceâ€Engineered Amorphous TiO ₂ â€Based Resistive Memory Devices. Advanced Functional Materials, 2010, 20, 3912-3917.	14.9	163
131	Versatile Carbon Hybrid Films Composed of Vertical Carbon Nanotubes Grown on Mechanically Compliant Graphene Films. Advanced Materials, 2010, 22, 1247-1252.	21.0	307
132	Bipolar resistive switching characteristics of poly(3,4-ethylene-dioxythiophene): Poly(styrenesulfonate) thin film. Current Applied Physics, 2010, 10, e46-e49.	2.4	29
133	Comprehensive modeling of resistive switching in the Al/TiOx/TiO2/Al heterostructure based on space-charge-limited conduction. Applied Physics Letters, 2010, 97, .	3.3	67
134	Conduction and Low-Frequency Noise Analysis in \$ hbox{Al}/alphahbox{-TiO}_{X}/hbox{Al}\$ Bipolar Switching Resistance Random Access Memory Devices. IEEE Electron Device Letters, 2010, 31, 603-605.	3.9	37
135	Direct observation of microscopic change induced by oxygen vacancy drift in amorphous TiO2 thin films. Applied Physics Letters, 2010, 97, .	3.3	37
136	LOW TEMPERATURE FABRICATION AND PHYSICAL PROPERTIES OF 5 at.% Ga-DOPED ZnO FILMS FOR TRANSPARENT ELECTRODE APPLICATIONS. Functional Materials Letters, 2010, 03, 101-105.	1.2	2
137	Hybrid nanowire–multilayer graphene film light-emitting sources. Nanotechnology, 2010, 21, 425203.	2.6	8
138	Surface Energy Modification by Spin-Cast, Large-Area Graphene Film for Block Copolymer Lithography. ACS Nano, 2010, 4, 5464-5470.	14.6	132
139	Graphene Oxide Thin Films for Flexible Nonvolatile Memory Applications. Nano Letters, 2010, 10, 4381-4386.	9.1	554
140	A low-temperature-grown TiO $<$ sub $>$ 2 $<$ /sub $>$ -based device for the flexible stacked RRAM application. Nanotechnology, 2010, 21, 115203.	2.6	112
141	Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Applied Physics Letters, 2009, 95, .	3.3	104
142	Use of 1,3-dithiane combined with aryldiazonium cation for immobilization of biomolecules based on electrochemical addressing. Chemical Communications, 2009, , 4865.	4.1	7
143	Effects of oxygen concentration on the electrical properties of ZnO films. Ceramics International, 2008, 34, 1097-1101.	4.8	27
144	Structure Effects on Resistive Switching of \$ hbox{Al/TiO}_{x}/hbox{Al}\$ Devices for RRAM Applications. IEEE Electron Device Letters, 2008, 29, 331-333.	3.9	86

#	Article	IF	Citations
145	Electrochemically active, anti-biofouling polymer adlayers on indium-tin-oxide electrodes. Chemical Communications, 2008, , 3543.	4.1	8
146	Orientations of Polycrystalline ZnO at the Buried Interface of Oxide Thin Film Transistors (TFTs): A Grazing Incidence X-ray Diffraction Study. Bulletin of the Korean Chemical Society, 2008, 29, 727-728.	1.9	5
147	Sublithographic vertical gold nanogap for label-free electrical detection of protein-ligand binding. Journal of Vacuum Science & Technology B, 2007, 25, 443.	1.3	50
148	Rapid Vapor-Phase Fabrication of Organicâ^'Inorganic Hybrid Superlattices with Monolayer Precision. Journal of the American Chemical Society, 2007, 129, 16034-16041.	13.7	103
149	Gadolinium Oxide Nanoring and Nanoplate:  Anisotropic Shape Control. Crystal Growth and Design, 2007, 7, 1378-1380.	3.0	42
150	Ambient Pressure Syntheses of Size-Controlled Corundum-type In2O3Nanocubes. Journal of the American Chemical Society, 2006, 128, 9326-9327.	13.7	185
151	V-Shaped Tin Oxide Nanostructures Featuring a Broad Photocurrent Signal: An Effective Visible-Light-Driven Photocatalyst. Small, 2006, 2, 1436-1439.	10.0	140
152	Adsorption behavior of binary mixed alkanethiol molecules on Au: Scanning tunneling microscope and linear-scan voltammetry investigation. Applied Surface Science, 2006, 252, 4951-4956.	6.1	14
153	Enhanced surface evolution induced by the molecular desorption in dodecanethiol self-assembled monolayer on Au(111). Surface Science, 2006, 600, 625-631.	1.9	4
154	Fabrication of Nano-Gap Electrode Pairs Using Atomic-Layer-Deposited Sacrificial Layer and Shadow Deposition. Japanese Journal of Applied Physics, 2006, 45, 4293-4295.	1.5	1
155	Current flow through different phases of dodecanethiol self-assembled monolayer. Surface Science, 2005, 583, 88-93.	1.9	11
156	The fabrication technique and electrical properties of a free-standing GaN nanowire. Applied Physics A: Materials Science and Processing, 2005, 81, 245-247.	2.3	6
157	Fabrication of poly-Si/Au nano-gaps using atomic-layer-deposited Al2O3as a sacrificial layer. Nanotechnology, 2005, 16, 361-364.	2.6	8
158	V2O5 nanowire-based nanoelectronic devices for helium detection. Applied Physics Letters, 2005, 86, 253102.	3.3	62
159	Synthesis and Characterization of Monomeric, Oligomeric, and Polymeric Aluminum 8-Hydroxyquinolines. Inorganic Chemistry, 2005, 44, 7911-7917.	4.0	15
160	Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Applied Physics Letters, 2005, 86, 213105.	3.3	239
161	Cross-sectional transmission electron microscopy of carbon nanotubes–catalyst–substrate heterostructure using a novel method for specimen preparation. Thin Solid Films, 2002, 415, 78-82.	1.8	20
162	Characterization of Fe-catalyzed carbon nanotubes grown by thermal chemical vapor deposition. Journal of Crystal Growth, 2002, 244, 211-217.	1.5	62

#	Article	IF	CITATIONS
163	Micropatterned Vertically Aligned Carbon Nanotube Growth on a Si Surface or inside Trenches for field-emission devices. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	0
164	Large field emission current density from well-aligned carbon nanotube field emitter arrays. Current Applied Physics, 2001, 1, 61-65.	2.4	23
165	Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays. Applied Physics Letters, 2001, 78, 901-903.	3.3	212
166	Large Field Emission from Vertically Well-aligned Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2000, 633, 1491.	0.1	0
167	Scaling behavior at the onset of chaos in the logistic map driven by colored noise. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 205, 173-178.	2.1	7
168	Gated carbon nanotube emitters grown on silicon trench wells with a sidewall spacer for stable vacuum microwave devices. , 0 , , .		0