Jiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/285496/publications.pdf

Version: 2024-02-01

33	2,321	26	34
papers	citations	h-index	g-index
38	38	38	3849
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Macrophage mitochondrial fission improves cancer cell phagocytosis induced by therapeutic antibodies and is impaired by glutamine competition. Nature Cancer, 2022, 3, 453-470.	13.2	21
2	Circulating MicroRNA: Incident Asthma Prediction and Vitamin D Effect Modification. Journal of Personalized Medicine, 2021, 11, 307.	2.5	7
3	The IRENA IncRNA converts chemotherapy-polarized tumor-suppressing macrophages to tumor-promoting phenotypes in breast cancer. Nature Cancer, 2021, 2, 457-473.	13.2	31
4	A CD10â€OGP Membrane Peptolytic Signaling Axis in Fibroblasts Regulates Lipid Metabolism of Cancer Stem Cells via SCD1. Advanced Science, 2021, 8, e2101848.	11.2	17
5	Eosinophil extracellular traps drive asthma progression through neuro-immune signals. Nature Cell Biology, 2021, 23, 1060-1072.	10.3	42
6	Connecting METTL3 and intratumoural CD33+ MDSCs in predicting clinical outcome in cervical cancer. Journal of Translational Medicine, 2020, 18, 393.	4.4	36
7	Hypoxia Induces Mitochondrial Defect That Promotes T Cell Exhaustion in Tumor Microenvironment Through MYC-Regulated Pathways. Frontiers in Immunology, 2020, 11, 1906.	4.8	65
8	Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma. Cell Research, 2020, 30, 950-965.	12.0	111
9	Galectin-9 promotes a suppressive microenvironment in human cancer by enhancing STING degradation. Oncogenesis, 2020, 9, 65.	4.9	52
10	Sphingosine 1 phosphate receptor-1 (S1P1) promotes tumor-associated regulatory T cell expansion: leading to poor survival in bladder cancer. Cell Death and Disease, 2019, 10, 50.	6.3	34
11	Silencing PD-1 and PD-L1 with nanoparticle-delivered small interfering RNA increases cytotoxicity of tumor-infiltrating lymphocytes. Nanomedicine, 2019, 14, 955-967.	3.3	53
12	STING signaling remodels the tumor microenvironment by antagonizing myeloid-derived suppressor cell expansion. Cell Death and Differentiation, 2019, 26, 2314-2328.	11.2	81
13	Tumour YAP1 and PTEN expression correlates with tumourâ€associated myeloid suppressor cell expansion and reduced survival in colorectal cancer. Immunology, 2018, 155, 263-272.	4.4	34
14	CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene, 2017, 36, 2095-2104.	5.9	216
15	LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLoS Pathogens, 2017, 13, e1006503.	4.7	103
16	Exosomal <scp>miR</scp> â€24â€3p impedes Tâ€cell function by targeting <i><scp>FGF11</scp></i> and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. Journal of Pathology, 2016, 240, 329-340.		184
17	Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. Journal of Translational Medicine, 2015, 13, 47.	4.4	149
18	Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator. Cancer Immunology, Immunotherapy, 2015, 64, 1587-1599.	4.2	71

#	Article	IF	Citations
19	Phase I trial of adoptively transferred tumor-infiltrating lymphocyte immunotherapy following concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma. Oncolmmunology, 2015, 4, e976507.	4.6	61
20	COX-2 promotes metastasis in nasopharyngeal carcinoma by mediating interactions between cancer cells and myeloid-derived suppressor cells. Oncolmmunology, 2015, 4, e1044712.	4.6	79
21	A phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma. Oncotarget, 2015, 6, 41339-41349.	1.8	79
22	Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget, 2014, 5, 5439-5452.	1.8	303
23	Increased HIF-1alpha expression in tumor cells and lymphocytes of tumor microenvironments predicts unfavorable survival in esophageal squamous cell carcinoma patients. International Journal of Clinical and Experimental Pathology, 2014, 7, 3887-97.	0.5	11
24	The expressions of MIF and CXCR4 protein in tumor microenvironment are adverse prognostic factors in patients with esophageal squamous cell carcinoma. Journal of Translational Medicine, 2013, 11, 60.	4.4	40
25	Tumor Microenvironment Macrophage Inhibitory Factor Directs the Accumulation of Interleukin-17-producing Tumor-infiltrating Lymphocytes and Predicts Favorable Survival in Nasopharyngeal Carcinoma Patients. Journal of Biological Chemistry, 2012, 287, 35484-35495.	3.4	73
26	Ex vivo expansion of tumor-infiltrating lymphocytes from nasopharyngeal carcinoma patients for adoptive immunotherapy. Chinese Journal of Cancer, 2012, 31, 287-294.	4.9	27
27	Circulating and Tumor-Infiltrating Foxp3+ Regulatory T Cell Subset in Chinese Patients with Extranodal NK/T Cell Lymphoma. International Journal of Biological Sciences, 2011, 7, 1027-1036.	6.4	8
28	Immunophenotyping at the Time of Diagnosis Distinguishes Two Groups of Nasopharyngeal Carcinoma Patients: Implications for Adoptive Immunotherapy. International Journal of Biological Sciences, 2011, 7, 607-617.	6.4	12
29	Distribution, characterization, and induction of CD8+ regulatory T cells and IL-17-producing CD8+ T cells in nasopharyngeal carcinoma. Journal of Translational Medicine, 2011, 9, 189.	4.4	43
30	Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways. Molecular Cancer, 2010, 9, 4.	19.2	123
31	Regulatory T cells and EBV associated malignancies. International Immunopharmacology, 2009, 9, 590-592.	3.8	36
32	Expression of immune-related molecules in primary EBV positive chinese nasopharyngeal carcinoma: Associated with latent membrane protein 1 (LMP1) expression. Cancer Biology and Therapy, 2007, 6, 1997-2004.	3.4	32
33	Functional Inactivation of EBV-Specific T-Lymphocytes in Nasopharyngeal Carcinoma: Implications for Tumor Immunotherapy. PLoS ONE, 2007, 2, e1122.	2.5	85