Beatriz Baragaña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2854282/publications.pdf

Version: 2024-02-01

471509 526287 1,411 26 17 27 citations h-index g-index papers 30 30 30 2089 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.	27.8	353
2	Challenges and recent progress in drug discovery for tropical diseases. Nature, 2018, 559, 498-506.	27.8	164
3	Protease-Catalyzed Peptide Synthesis on Solid Support. Journal of the American Chemical Society, 2002, 124, 10988-10989.	13.7	107
4	High Diastereoselective Synthesis of Threo or Erythro Aminoalkyl Epoxides from .alphaAmino Acids. Journal of Organic Chemistry, 1995, 60, 6696-6699.	3.2	98
5	Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7015-7020.	7.1	94
6	Discovery of a Quinoline-4-carboxamide Derivative with a Novel Mechanism of Action, Multistage Antimalarial Activity, and Potent in Vivo Efficacy. Journal of Medicinal Chemistry, 2016, 59, 9672-9685.	6.4	66
7	Enantioselective Transport by a Steroidal Guanidinium Receptor. Chemistry - A European Journal, 2002, 8, 2931.	3.3	64
8	Differentially-protected steroidal triamines; scaffolds with potential for medicinal, supramolecular, and combinatorial chemistry. Organic and Biomolecular Chemistry, 2004, 2, 3320-3328.	2.8	54
9	MalDA, Accelerating Malaria Drug Discovery. Trends in Parasitology, 2021, 37, 493-507.	3.3	51
10	The first direct preparation of chiral functionalised ketones and their synthetic uses. Journal of the Chemical Society Chemical Communications, 1994, , 969-970.	2.0	48
11	Biochemical and Structural Characterization of Selective Allosteric Inhibitors of the <i>Plasmodium falciparum</i> Drug Target, Prolyl-tRNA-synthetase. ACS Infectious Diseases, 2017, 3, 34-44.	3.8	45
12	Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Cell Chemical Biology, 2022, 29, 191-201.e8.	5.2	39
13	Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infectious Diseases, 2021, 7, 2764-2776.	3.8	35
14	Design, Synthesis, and Evaluation of 5′â€Diphenyl Nucleoside Analogues as Inhibitors of the <i>Plasmodium falciparum</i> dUTPase. ChemMedChem, 2011, 6, 1816-1831.	3.2	30
15	Synthesis of Enantiopure αâ€~-Amino α,β-Epoxy Ketones from αâ€~-Amino Bromomethyl Ketones. Journal of Organic Chemistry, 1999, 64, 5048-5052.	3.2	27
16	\hat{l}^2 -Branched acyclic nucleoside analogues as inhibitors of Plasmodium falciparum dUTPase. Bioorganic and Medicinal Chemistry, 2011, 19, 2378-2391.	3.0	24
17	Synthetic Applications of 1-Aminoalkyl Chloromethyl Ketones. Synthesis of Enantiopure 3-Azetidinols and Aminoalkyl Epoxides. Journal of Organic Chemistry, 1997, 62, 5974-5977.	3.2	23
18	Preparation and Synthetic Applications of Enantiopure (2S,3S)- or (2R,3S)-2-Halomethyl-1,2-epoxyalkan-3-amines. Journal of Organic Chemistry, 1999, 64, 2843-2846.	3.2	16

#	Article	IF	CITATIONS
19	Selective delivery of 2-hydroxy APA to Trypanosoma brucei using the melamine motif. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4364-4366.	2.2	14
20	Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials. Journal of Medicinal Chemistry, 2016, 59, 6101-6120.	6.4	13
21	Screening a protein kinase inhibitor library against Plasmodium falciparum. Malaria Journal, 2017, 16, 446.	2.3	12
22	High-Throughput Screening Platform To Identify Inhibitors of Protein Synthesis with Potential for the Treatment of Malaria. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	10
23	Synthesis of allylamines in enantiomerically pure form. Tetrahedron Letters, 2000, 41, 4361-4362.	1.4	7
24	Validation of Plasmodium falciparum dUTPase as the target of 5′-tritylated deoxyuridine analogues with anti-malarial activity. Malaria Journal, 2019, 18, 392.	2.3	7
25	Substituted Aminoacetamides as Novel Leads for Malaria Treatment. ChemMedChem, 2019, 14, 1329-1335.	3.2	5
26	<i>Mycobacterium tuberculosis</i> Phe-tRNA synthetase: structural insights into tRNA recognition and aminoacylation. Nucleic Acids Research, 2021, 49, 5351-5368.	14.5	1