
Aurora Cruz-Cabeza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2853462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conformational Polymorphism. Chemical Reviews, 2014, 114, 2170-2191.	47.7	590
2	Facts and fictions about polymorphism. Chemical Society Reviews, 2015, 44, 8619-8635.	38.1	499
3	Acid–base crystalline complexes and the pKa rule. CrystEngComm, 2012, 14, 6362.	2.6	464
4	Significant progress in predicting the crystal structures of small organic molecules – a report on the fourth blind test. Acta Crystallographica Section B: Structural Science, 2009, 65, 107-125.	1.8	371
5	Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test. Acta Crystallographica Section B: Structural Science, 2011, 67, 535-551.	1.8	358
6	Solvation and surface effects on polymorph stabilities at the nanoscale. Chemical Science, 2016, 7, 6617-6627.	7.4	128
7	Successful prediction of a model pharmaceutical in the fifth blind test of crystal structure prediction. International Journal of Pharmaceutics, 2011, 418, 168-178.	5.2	110
8	Towards Prediction of Stoichiometry in Crystalline Multicomponent Complexes. Chemistry - A European Journal, 2008, 14, 8830-8836.	3.3	92
9	Prediction and Observation of Isostructurality Induced by Solvent Incorporation in Multicomponent Crystals. Journal of the American Chemical Society, 2006, 128, 14466-14467.	13.7	91
10	Can the study of self-assembly in solution lead to a good model for the nucleation pathway? The case of tolfenamic acid Chemical Science, 2015, 6, 3515-3524.	7.4	85
11	Predicting stoichiometry and structure of solvates. Chemical Communications, 2010, 46, 2224.	4.1	78
12	Open questions in organic crystal polymorphism. Communications Chemistry, 2020, 3, .	4.5	77
13	"Guanigmaâ€! The Revised Structure of Biogenic Anhydrous Guanine. Chemistry of Materials, 2015, 27, 8289-8297.	6.7	74
14	Aromatic stacking $\hat{a} \in \hat{a}$ a key step in nucleation. Chemical Communications, 2017, 53, 7905-7908.	4.1	70
15	Solvent inclusion in form II carbamazepine. Chemical Communications, 2007, , 1600.	4.1	62
16	Predicting Inclusion Behaviour and Framework Structures in Organic Crystals. Chemistry - A European Journal, 2009, 15, 13033-13040.	3.3	61
17	Amide Pyramidalization in Carbamazepine:  A Flexibility Problem in Crystal Structure Prediction?. Crystal Growth and Design, 2006, 6, 1858-1866.	3.0	60
18	Identification, classification and relative stability of tautomers in the cambridge structural database. CrystEngComm, 2011, 13, 93-98.	2.6	58

Aurora Cruz-Cabeza

#	Article	IF	CITATIONS
19	Is the Fenamate Group a Polymorphophore? Contrasting the Crystal Energy Landscapes of Fenamic and Tolfenamic Acids. Crystal Growth and Design, 2012, 12, 4230-4239.	3.0	56
20	Concerning Elusive Crystal Forms: The Case of Paracetamol. Journal of the American Chemical Society, 2020, 142, 6682-6689.	13.7	54
21	Pharmaceutical hydrates under ambient conditions from high-pressure seeds: a case study of GABA monohydrate. Chemical Communications, 2014, 50, 1817-1819.	4.1	53
22	Importance of Molecular Shape for the Overall Stability of Hydrogen Bond Motifs in the Crystal Structures of Various Carbamazepine-Type Drug Molecules. Crystal Growth and Design, 2007, 7, 100-107.	3.0	52
23	Metal-Exchanged \hat{I}^2 Zeolites as Catalysts for the Conversion of Acetone to Hydrocarbons. Materials, 2012, 5, 121-134.	2.9	46
24	Space group selection for crystal structure prediction of solvates. CrystEngComm, 2007, 9, 556.	2.6	45
25	Crystal nucleation and growth in a polymorphic system: Ostwald's rule, <i>p</i> -aminobenzoic acid and nucleation transition states. CrystEngComm, 2018, 20, 768-776.	2.6	42
26	Controlling molecular tautomerism through supramolecular selectivity. Chemical Communications, 2013, 49, 7929.	4.1	38
27	Structure prediction, disorder and dynamics in a DMSO solvate of carbamazepine. Physical Chemistry Chemical Physics, 2011, 13, 12808.	2.8	36
28	Transition metal exchanged \hat{l}^2 zeolites: Characterization of the metal state and catalytic application in the methanol conversion to hydrocarbons. Microporous and Mesoporous Materials, 2013, 179, 30-39.	4.4	36
29	Systematic conformational bias in small-molecule crystal structures is rare and explicable. CrystEngComm, 2012, 14, 6797.	2.6	34
30	Synthon preferences in cocrystals of cis-carboxamides:carboxylic acids. CrystEngComm, 2012, 14, 2552.	2.6	33
31	Local environment and acidity in alkaline and alkaline-earth exchanged \hat{l}^2 zeolite: Structural analysis and catalytic properties. Microporous and Mesoporous Materials, 2011, 142, 672-679.	4.4	32
32	Salts, Cocrystals, and Ionic Cocrystals of a "Simple―Tautomeric Compound. Crystal Growth and Design, 2018, 18, 6973-6983.	3.0	32
33	The Kinetic Story of Tailor-made Additives in Polymorphic Systems: New Data and Molecular Insights for <i>p-</i> Aminobenzoic Acid. Crystal Growth and Design, 2018, 18, 7518-7525.	3.0	31
34	Nanoindentation of Molecular Crystals: Lessons Learned from Aspirin. Crystal Growth and Design, 2020, 20, 5956-5966.	3.0	31
35	Crystal structure prediction: are we there yet?. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 437-438.	1.1	30
36	Polymorphism in <i>p</i> -aminobenzoic acid. CrystEngComm, 2019, 21, 2034-2042.	2.6	30

Aurora Cruz-Cabeza

#	Article	IF	CITATIONS
37	Cocrystals Help Break the "Rules―of Isostructurality: Solid Solutions and Polymorphism in the Malic/Tartaric Acid System. Crystal Growth and Design, 2018, 18, 855-863.	3.0	27
38	The unexpected discovery of the ninth polymorph of tolfenamic acid. CrystEngComm, 2021, 23, 3636-3647.	2.6	25
39	Switching polymorph stabilities with impurities provides a thermodynamic route to benzamide form III. Communications Chemistry, 2021, 4, .	4.5	25
40	When Crystals Do Not Grow: The Growth Dead Zone. Crystal Growth and Design, 2019, 19, 4579-4587.	3.0	23
41	Observed and predicted hydrogen bond motifs in crystal structures of hydantoins, dihydrouracils and uracils. New Journal of Chemistry, 2012, 36, 1347.	2.8	22
42	A 2:1 sulfamethazine–theophylline cocrystal exhibiting two tautomers of sulfamethazine. Acta Crystallographica Section C: Crystal Structure Communications, 2011, 67, o306-o309.	0.4	21
43	Same or different – that is the question: identification of crystal forms from crystal structure data. CrystEngComm, 2020, 22, 7170-7185.	2.6	21
44	Transforming Computed Energy Landscapes into Experimental Realities: The Role of Structural Rugosity. Angewandte Chemie - International Edition, 2020, 59, 20357-20360.	13.8	21
45	On the entropy cost of making solvates. Chemical Communications, 2020, 56, 5127-5130.	4.1	21
46	On the prevalence of smooth polymorphs at the nanoscale: implications for pharmaceuticals. CrystEngComm, 2019, 21, 2203-2211.	2.6	20
47	The role of solvation in proton transfer reactions: implications for predicting salt/co-crystal formation using the Δp <i>K</i> _a rule. Faraday Discussions, 2022, 235, 446-466.	3.2	20
48	Annular tautomerism: experimental observations and quantum mechanics calculations. Journal of Computer-Aided Molecular Design, 2010, 24, 575-586.	2.9	18
49	Impact of Crystal Structure and Molecular Conformation on the Hydration Kinetics of Fluconazole. Crystal Growth and Design, 2019, 19, 7193-7205.	3.0	17
50	The Curious Case of 2-Propyl-1 <i>H</i> -benzimidazole in the Solid State: An Experimental and Theoretical Study. Journal of Physical Chemistry A, 2017, 121, 5665-5674.	2.5	14
51	On the kinetics of solvate formation through mechanochemistry. CrystEngComm, 2019, 21, 2097-2104.	2.6	14
52	The interplay of intra- and intermolecular errors in modeling conformational polymorphs. Journal of Chemical Physics, 2022, 156, 104112.	3.0	14
53	Isolation and evolution of labile sulfur allotropes <i>via</i> kinetic encapsulation in interactive porous networks. IUCrJ, 2016, 3, 232-236.	2.2	13
54	Can molecular flexibility control crystallization? The case of <i>para</i> substituted benzoic acids. Chemical Science, 2021, 12, 993-1000.	7.4	12

#	Article	IF	CITATIONS
55	Can solvated intermediates inform us about nucleation pathways? The case of β- <i>p</i> ABA. CrystEngComm, 2020, 22, 7447-7459.	2.6	11
56	Discovery and recovery of delta <i>p</i> -aminobenzoic acid. CrystEngComm, 2019, 21, 2058-2066.	2.6	10
57	Transforming Computed Energy Landscapes into Experimental Realities: The Role of Structural Rugosity. Angewandte Chemie, 2020, 132, 20537-20540.	2.0	10
58	ls it usual to be unusual? An investigation into molecular conformations in organic crystals. CrystEngComm, 2020, 22, 7217-7228.	2.6	10
59	Conformation and geometry of cyclopropane rings having π-acceptor substituents: a theoretical and database study. Acta Crystallographica Section B: Structural Science, 2011, 67, 94-102.	1.8	9
60	A novel image analysis technique for 2D characterization of overlapping needle-like crystals. Powder Technology, 2022, 399, 116827.	4.2	9
61	Conformational Change in Molecular Crystals: Impact of Solvate Formation and Importance of Conformational Free Energies. Crystal Growth and Design, 2021, 21, 6924-6936.	3.0	9
62	Applications of crystal structure prediction – organic molecular structures: general discussion. Faraday Discussions, 2018, 211, 493-539.	3.2	8
63	Conformational Change Initiates Dehydration in Fluconazole Monohydrate. Crystal Growth and Design, 2020, 20, 6044-6056.	3.0	8
64	Crystal structure evaluation: calculating relative stabilities and other criteria: general discussion. Faraday Discussions, 2018, 211, 325-381.	3.2	7
65	Impact of polymorphism on mechanical properties of molecular crystals: a study of <i>p</i> -amino and <i>p</i> -nitro benzoic acid with nanoindentation. CrystEngComm, 2021, 23, 2027-2033.	2.6	7
66	Conformational aspects of polymorphs and phases of 2-propyl-1 <i>H</i> -benzimidazole. IUCrJ, 2018, 5, 706-715.	2.2	7
67	Enhanced Concentration of Medium Strength Brönsted Acid Sites in Aluminium-Modified β Zeolite. Catalysis Letters, 2012, 142, 112-117.	2.6	6
68	Hydrogen-bond landscapes, geometry and energetics of squaric acid and its mono- and dianions: a Cambridge Structural Database, IsoStar and computational study. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2013, 69, 514-523.	1.1	6
69	Crystal Growth Cell Incorporating Automated Image Analysis Enabling Measurement of Facet Specific Crystal Growth Rates. Crystal Growth and Design, 2022, 22, 2837-2848.	3.0	6
70	Isomechanical Groups in Molecular Crystals and Role of Aromatic Interactions. Crystal Growth and Design, 2020, 20, 7516-7525.	3.0	5
71	Geometry and conformation of cyclopropane derivatives having σ-acceptor and σ-donor substituents: a theoretical and crystal structure database study. Acta Crystallographica Section B: Structural Science, 2012, 68, 182-188.	1.8	4
72	Probing anisotropic mechanical behaviour in carbamazepine form III. CrystEngComm, 2021, 23, 5826-5838.	2.6	4

AURORA CRUZ-CABEZA

#	Article	IF	CITATIONS
73	Brittle Behavior in Aspirin Crystals: Evidence of Spalling Fracture. Crystal Growth and Design, 2021, 21, 1786-1790.	3.0	4
74	The Impact of Ionic Surfactants on the Crystallisation of Glycine Polymorphs. Israel Journal of Chemistry, 2021, 61, 573-582.	2.3	3
75	Controlling desolvation through polymer-assisted grinding. CrystEngComm, 2022, 24, 2305-2313.	2.6	3
76	Validation of the Existence of Tetrameric Species of Potassium Trimethylsilanolate in the Gas Phase with a Theoretical Cluster Model:Â Role of the Counterion as Charge Localizer in the Structure. Journal of Physical Chemistry A, 2007, 111, 2629-2633.	2.5	2
77	A Truly Polymorphic Issue in Honor of Prof Joel Bernstein. Crystal Growth and Design, 2020, 20, 2819-2823.	3.0	2
78	Multicomponent Crystals of Chlorpropamide: Multiple Conformers, Multiple <i>Z</i> ′, and Proton Transfer at Play. Crystal Growth and Design, 2021, 21, 3158-3167.	3.0	2
79	The solid state of pharmaceuticals. CrystEngComm, 2019, 21, 2031-2033.	2.6	1
80	Does the Age of Pharmaceuticals Matter? Undetectable Hydrate Seeds Impact Hydration Behavior. Crystal Growth and Design, 2021, 21, 1912-1916.	3.0	1
81	Joel Bernstein (1941–2019). Crystal Growth and Design, 2019, 19, 521-522.	3.0	0
82	Professor Roger Davey: Master of <i>All</i> Crystal Trades. Crystal Growth and Design, 0, , .	3.0	0