Bansi D Malhotra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2853350/publications.pdf

Version: 2024-02-01

345 papers 23,516 citations

81 h-index 134 g-index

354 all docs

354 docs citations

354 times ranked

19393 citing authors

#	Article	IF	Citations
1	Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coordination Chemistry Reviews, 2022, 452, 214282.	18.8	57
2	Graphitic carbon nitride-based nanoplatforms for biosensors: design strategies and applications. Materials Today Chemistry, 2022, 24, 100770.	3.5	20
3	Detection of biomolecules in dielectric modulated double metal below ferroelectric layer FET with improved sensitivity. Journal of Materials Science: Materials in Electronics, 2022, 33, 13558-13567.	2.2	6
4	Analog/RF Performance and Effect of Temperature on Ferroelectric Layer Improved FET device with Spacer. Silicon, 2022, 14, 12269-12280.	3.3	8
5	Linearity Performance of Double Metal Negative Capacitance Field-Effect Transistors: A Numerical Study. , 2022, , .		1
6	Prospects of nanomaterials-enabled biosensors for COVID-19 detection. Science of the Total Environment, 2021, 754, 142363.	8.0	114
7	Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Advances, 2021, 3, 2679-2698.	4.6	76
8	Point-of-Care PCR Assays for COVID-19 Detection. Biosensors, 2021, 11, 141.	4.7	73
9	TCAD Analysis and Simulation of Double Metal Negative Capacitance FET (DM NCFET)., 2021,,.		9
10	Ultrasensitive biosensing platform based on yttria doped zirconia-reduced graphene oxide nanocomposite for detection of salivary oral cancer biomarker. Bioelectrochemistry, 2021, 140, 107799.	4.6	24
11	Impedance spectroscopic study of biofilm formation on pencil lead graphite anode in microbial fuel cell. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128, 114-123.	5.3	7
12	Bioinspired synthesis of iron-based nanomaterials for application in biofuels production: A new in-sight. Renewable and Sustainable Energy Reviews, 2021, 147, 111206.	16.4	18
13	Recent advances in 3D printing technologies for wearable (bio)sensors. Additive Manufacturing, 2021, 46, 102088.	3.0	66
14	Nanobioelectrochemistry: Fundamentals and biosensor applications. Frontiers of Nanoscience, 2021, , 87-128.	0.6	0
15	Emerging DNA-based multifunctional nano-biomaterials towards electrochemical sensing applications. Nanoscale, 2021, 13, 10305-10319.	5.6	8
16	A Chemosensor Based on Gold Nanoparticles and Dithiothreitol (DTT) for Acrylamide Electroanalysis. Nanomaterials, 2021, 11, 2610.	4.1	3
17	A Numerical Study of Analog Parameter of Negative Capacitance Field Effect Transistor with Spacer. , 2021, , .		6
18	Dual-modality microfluidic biosensor based on nanoengineered mesoporous graphene hydrogels. Lab on A Chip, 2020, 20, 760-777.	6.0	36

#	Article	IF	Citations
19	An impedimetric biosensor based on electrophoretically assembled ZnO nanorods and carboxylated graphene nanoflakes on anÂindium tin oxide electrode forÂdetection of the DNA of Escherichia coli O157:H7. Mikrochimica Acta, 2020, 187, 1.	5.0	332
20	Nanoengineered Conductive Polyaniline Enabled Sensor for Sensitive Humidity Detection. IEEE Sensors Journal, 2020, 20, 12574-12581.	4.7	12
21	Exploring Providencia rettgeri for application to eco-friendly paper based microbial fuel cell. Biosensors and Bioelectronics, 2020, 165, 112323.	10.1	25
22	Emerging Trends in Microfluidics Based Devices. Biotechnology Journal, 2020, 15, e1900279.	3.5	29
23	Review—Textile Based Chemical and Physical Sensors for Healthcare Monitoring. Journal of the Electrochemical Society, 2020, 167, 037546.	2.9	115
24	Biofunctionalized nanodot zirconia-based efficient biosensing platform for noninvasive oral cancer detection. MRS Communications, 2020, 10, 652-659.	1.8	8
25	Recent Advances of Conducting Polymers and Their Composites for Electrochemical Biosensing Applications. Journal of Functional Biomaterials, 2020, 11, 71.	4.4	35
26	Biofunctionalized Nanostructured Yttria Modified Non-Invasive Impedometric Biosensor for Efficient Detection of Oral Cancer. Nanomaterials, 2019, 9, 1190.	4.1	26
27	Nanomaterialâ€Modified Conducting Paper: Fabrication, Properties, and Emerging Biomedical Applications. Global Challenges, 2019, 3, 1900041.	3.6	23
28	Amine-Functionalized MoO ₃ @RGO Nanohybrid-Based Biosensor for Breast Cancer Detection. ACS Applied Bio Materials, 2019, 2, 5366-5378.	4.6	67
29	Cell-based biosensors: Recent trends, challenges and future perspectives. Biosensors and Bioelectronics, 2019, 141, 111435.	10.1	194
30	Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnology Advances, 2019, 37, 107384.	11.7	101
31	Protein functionalised self assembled monolayer based biosensor for colon cancer detection. Talanta, 2019, 201, 465-473.	5.5	37
32	A hollow-nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin I. Journal of Materials Chemistry B, 2019, 7, 3826-3839.	5.8	36
33	Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT:PSS. Analytica Chimica Acta, 2019, 1056, 135-145.	5.4	98
34	Bioconjugated Nanostructured Metals and Metal Oxides for Biosensors. , 2018, , 105-125.		1
35	Fabrication of sensitive bioelectrode based on atomically thin CVD grown graphene for cancer biomarker detection. Biosensors and Bioelectronics, 2018, 105, 173-181.	10.1	69
36	Biofunctionalized tungsten trioxide-reduced graphene oxide nanocomposites for sensitive electrochemical immunosensing of cardiac biomarker. Journal of Alloys and Compounds, 2018, 763, 102-110.	5 . 5	45

#	Article	IF	CITATIONS
37	Multiwalled carbon nanotube modified microfluidic-based biosensor chip for nucleic acid detection. Sensors and Actuators B: Chemical, 2018, 266, 329-336.	7.8	49
38	Biofunctionalized graphene oxide wrapped carbon nanotubes enabled microfluidic immunochip for bacterial cells detection. Sensors and Actuators B: Chemical, 2018, 255, 2495-2503.	7.8	35
39	Effect of Brownian motion on reduced agglomeration of nanostructured metal oxide towards development of efficient cancer biosensor. Biosensors and Bioelectronics, 2018, 102, 247-255.	10.1	61
40	Microfluidics Based Pointâ€ofâ€Care Diagnostics. Biotechnology Journal, 2018, 13, 1700047.	3.5	193
41	Nanostructured Materials for DNA Biochip. , 2018, , 221-262.		0
42	An emerging nanostructured molybdenum trioxide-based biocompatible sensor platform for breast cancer biomarker detection. MRS Communications, 2018, 8, 668-679.	1.8	11
43	Nanomaterials in Biosensors. , 2018, , 1-74.		98
44	Functionalized Carbon Nanomaterials for Biosensors. , 2018, , 75-103.		10
45	Biopolymeric Nanostructures. , 2018, , 127-144.		3
46	Nanocomposite Materials., 2018,, 145-159.		8
47	Electrochemical genosensor based on carboxylated graphene for detection of water-borne pathogen. Sensors and Actuators B: Chemical, 2018, 275, 312-321.	7.8	36
48	Multi-organ on a chip for personalized precision medicine. MRS Communications, 2018, 8, 652-667.	1.8	16
49	Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. Sensors and Actuators B: Chemical, 2017, 246, 202-214.	7.8	65
50	Recent advances in carbon based nanosystems for cancer theranostics. Biomaterials Science, 2017, 5, 901-952.	5.4	172
51	Protein functionalized nanostructured zirconia based electrochemical immunosensor for cardiac troponin I detection. Journal of Materials Research, 2017, 32, 2966-2972.	2.6	30
52	Microporous Nanocomposite Enabled Microfluidic Biochip for Cardiac Biomarker Detection. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33576-33588.	8.0	63
53	Graphene oxide–metal nanocomposites for cancer biomarker detection. RSC Advances, 2017, 7, 35982-35991.	3.6	30
54	Production and Optimization of Physicochemical Parameters of Cellulase Using Untreated Orange Waste by Newly Isolated Emericella variecolor NS3. Applied Biochemistry and Biotechnology, 2017, 183, 601-612.	2.9	29

#	Article	IF	Citations
55	Highly sensitive electrochemical immunosensor based on graphene-wrapped copper oxide-cysteine hierarchical structure for detection of pathogenic bacteria. Sensors and Actuators B: Chemical, 2017, 238, 1060-1069.	7.8	91
56	Biofunctionalized nanostructured tungsten trioxide based sensor for cardiac biomarker detection. Materials Letters, 2017, 186, 202-205.	2.6	26
57	Excellent storage stability and sensitive detection of neurotoxin quinolinic acid. Biosensors and Bioelectronics, 2017, 90, 224-229.	10.1	15
58	Bismuth oxide nanorods based immunosensor for mycotoxin detection. Materials Science and Engineering C, 2017, 70, 564-571.	7.3	44
59	PEDOT:PSS/PVAâ€Nanofibersâ€Decorated Conducting Paper for Cancer Diagnostics. Advanced Materials Technologies, 2016, 1, 1600056.	5.8	41
60	Conducting paper based sensor for cancer biomarker detection. Journal of Physics: Conference Series, 2016, 704, 012010.	0.4	19
61	Nanomaterials based biosensors for cancer biomarker detection. Journal of Physics: Conference Series, 2016, 704, 012011.	0.4	36
62	Polyaniline modified flexible conducting paper for cancer detection. Applied Physics Letters, 2016, 108,	3.3	23
63	Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection. Sensors and Actuators B: Chemical, 2016, 235, 1-10.	7.8	84
64	A biocompatible serine functionalized nanostructured zirconia based biosensing platform for non-invasive oral cancer detection. RSC Advances, 2016, 6, 77037-77046.	3.6	36
65	Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for blood cancer detection. Analytica Chimica Acta, 2016, 937, 29-38.	5.4	24
66	Antibody conjugated metal nanoparticle decorated graphene sheets for a mycotoxin sensor. RSC Advances, 2016, 6, 56518-56526.	3.6	21
67	In-situ electrosynthesized nanostructured Mn3O4-polyaniline nanofibers- biointerface for endocrine disrupting chemical detection. Sensors and Actuators B: Chemical, 2016, 236, 781-793.	7.8	19
68	Electrospun functional micro/nanochannels embedded in porous carbon electrodes for microfluidic biosensing. Sensors and Actuators B: Chemical, 2016, 229, 82-91.	7.8	37
69	Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection. Biosensors and Bioelectronics, 2016, 78, 497-504.	10.1	166
70	A biofunctionalized quantum dot–nickel oxide nanorod based smart platform for lipid detection. Journal of Materials Chemistry B, 2016, 4, 2706-2714.	5.8	22
71	Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection. Biosensors and Bioelectronics, 2016, 80, 477-482.	10.1	33
72	Recent advances in mycotoxins detection. Biosensors and Bioelectronics, 2016, 81, 532-545.	10.1	237

#	Article	IF	Citations
73	Mesoporous Few-Layer Graphene Platform for Affinity Biosensing Application. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7646-7656.	8.0	50
74	Label-free piezoelectric immunosensor decorated with gold nanoparticles: Kinetic analysis and biosensing application. Sensors and Actuators B: Chemical, 2016, 222, 804-814.	7.8	54
75	Biofunctionalized Nanostructured Zirconia for Biomedical Application: A Smart Approach for Oral Cancer Detection. Advanced Science, 2015, 2, 1500048.	11.2	111
76	A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection. Scientific Reports, 2015, 5, 17384.	3.3	16
77	Biosensors for Food Toxin Detection: Carbon Nanotubes and Graphene. Materials Research Society Symposia Proceedings, 2015, 1725, 24.	0.1	15
78	Mediator-free biosensor using chitosan capped CdS quantum dots for detection of total cholesterol. RSC Advances, 2015, 5, 45928-45934.	3.6	27
79	Reduced graphene oxide modified smart conducting paper for cancer biosensor. Biosensors and Bioelectronics, 2015, 73, 114-122.	10.1	138
80	Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale, 2015, 7, 7234-7245.	5.6	107
81	Facile synthesis of 2-dimensional transparent graphene flakes for nucleic acid detection. Sensors and Actuators B: Chemical, 2015, 210, 281-289.	7.8	25
82	A novel electrochemical piezoelectric label free immunosensor for aflatoxin B1 detection in groundnut. Food Control, 2015, 52, 60-70.	5.5	83
83	Electrochemical piezoelectric reusable immunosensor for aflatoxin B1 detection. Biochemical Engineering Journal, 2015, 103, 103-113.	3.6	37
84	A chitosan modified nickel oxide platform for biosensing applications. Journal of Materials Chemistry B, 2015, 3, 6698-6708.	5.8	37
85	Organic–Inorganic Hybrid Nanocomposite-Based Gas Sensors for Environmental Monitoring. Chemical Reviews, 2015, 115, 4571-4606.	47.7	429
86	Protein Functionalized Carbon Nanotubes-based Smart Lab-on-a-Chip. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5837-5846.	8.0	58
87	Quantum dot-based microfluidic biosensor for cancer detection. Applied Physics Letters, 2015, 106, .	3.3	25
88	A solution processed carbon nanotube modified conducting paper sensor for cancer detection. Journal of Materials Chemistry B, 2015, 3, 9305-9314.	5.8	48
89	Protein conjugated carboxylated gold@reduced graphene oxide for aflatoxin B $<$ sub $>$ 1 $<$ /sub $>$ detection. RSC Advances, 2015, 5, 5406-5414.	3.6	59
90	Preface. Applied Biochemistry and Biotechnology, 2014, 174, 867-868.	2.9	0

#	Article	IF	CITATIONS
91	Chitosan-Modified Carbon Nanotubes-Based Platform for Low-Density Lipoprotein Detection. Applied Biochemistry and Biotechnology, 2014, 174, 926-935.	2.9	24
92	Coupling electrochemical response of a DNA biosensor with PCR for Neisseria gonorrhoeae detection. Diagnostic Microbiology and Infectious Disease, 2014, 78, 16-23.	1.8	13
93	Biosensors for pathogen detection: A smart approach towards clinical diagnosis. Sensors and Actuators B: Chemical, 2014, 197, 385-404.	7.8	147
94	Lipid–Lipid Interactions in Aminated Reduced Graphene Oxide Interface for Biosensing Application. Langmuir, 2014, 30, 4192-4201.	3.5	75
95	A dual enzyme functionalized nanostructured thulium oxide based interface for biomedical application. Nanoscale, 2014, 6, 1195-1208.	5.6	56
96	Reduced graphene oxide–titania based platform for label-free biosensor. RSC Advances, 2014, 4, 60386-60396.	3.6	24
97	Thiol Modified Chitosan Self-Assembled Monolayer Platform for Nucleic Acid Biosensor. Applied Biochemistry and Biotechnology, 2014, 174, 1201-1213.	2.9	8
98	Highly Sensitive Biofunctionalized Mesoporous Electrospun TiO ₂ Nanofiber Based Interface for Biosensing. ACS Applied Materials & Interfaces, 2014, 6, 2516-2527.	8.0	136
99	A surface functionalized nanoporous titania integrated microfluidic biochip. Nanoscale, 2014, 6, 13958-13969.	5.6	31
100	Graphene Oxide-Based Biosensor for Food Toxin Detection. Applied Biochemistry and Biotechnology, 2014, 174, 960-970.	2.9	60
101	Enhancing Performance of Uricase Using Multiwalled Carbon Nanotube Doped Polyaniline. Applied Biochemistry and Biotechnology, 2014, 174, 1174-1187.	2.9	19
102	Protein–Conjugated Quantum Dots Interface: Binding Kinetics and Label-Free Lipid Detection. Analytical Chemistry, 2014, 86, 1710-1718.	6.5	40
103	Mesoporous silica particle embedded functional graphene oxide as an efficient platform for urea biosensing. Analytical Methods, 2014, 6, 6711-6720.	2.7	36
104	Nanomaterial-Based Biosensors for Food Toxin Detection. Applied Biochemistry and Biotechnology, 2014, 174, 880-896.	2.9	94
105	Quantum Dots Self Assembly Based Interface for Blood Cancer Detection. Langmuir, 2013, 29, 8753-8762.	3.5	30
106	Highly sensitive biofunctionalized nickel oxide nanowires for nanobiosensing applications. RSC Advances, 2013, 3, 16060.	3.6	18
107	Phase control of nanostructured iron oxide for application to biosensor. Journal of Materials Chemistry B, 2013, 1, 464-474.	5.8	36
108	Cationic poly(lactic-co-glycolic acid) iron oxide microspheres for nucleic acid detection. Nanoscale, 2013, 5, 3800.	5.6	23

#	Article	IF	Citations
109	Quantum dots based platform for application to fish freshness biosensor. Sensors and Actuators B: Chemical, 2013, 177, 627-633.	7.8	19
110	A highly efficient rare earth metal oxide nanorods based platform for aflatoxin detection. Journal of Materials Chemistry B, 2013, 1, 4493.	5.8	63
111	Bienzyme-Functionalized Monodispersed Biocompatible Cuprous Oxide/Chitosan Nanocomposite Platform for Biomedical Application. Journal of Physical Chemistry B, 2013, 117, 141-152.	2.6	60
112	Mediator-free microfluidics biosensor based on titania–zirconia nanocomposite for urea detection. RSC Advances, 2013, 3, 228-235.	3.6	64
113	Magnesium oxide grafted carbon nanotubes based impedimetric genosensor for biomedical application. Biosensors and Bioelectronics, 2013, 50, 406-413.	10.1	19
114	Optical and electro-catalytic studies of nanostructured thulium oxide for vitamin C detection. Journal of Alloys and Compounds, 2013, 578, 405-412.	5.5	15
115	Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale, 2013, 5, 3043.	5.6	158
116	Highly Efficient Bienzyme Functionalized Biocompatible Nanostructured Nickel Ferrite–Chitosan Nanocomposite Platform for Biomedical Application. Journal of Physical Chemistry C, 2013, 117, 8491-8502.	3.1	65
117	A highly efficient microfluidic nano biochip based on nanostructured nickel oxide. Nanoscale, 2013, 5, 2883.	5.6	63
118	Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors and Actuators B: Chemical, 2013, 185, 258-264.	7.8	138
119	Biocompatible nanostructured magnesium oxide-chitosan platform for genosensing application. Biosensors and Bioelectronics, 2013, 45, 181-188.	10.1	33
120	Molecularly imprinted polyaniline-polyvinyl sulphonic acid composite based sensor for para-nitrophenol detection. Analytica Chimica Acta, 2013, 777, 63-71.	5.4	43
121	Microfluidicâ€integrated biosensors: Prospects for pointâ€ofâ€care diagnostics. Biotechnology Journal, 2013, 8, 1267-1279.	3.5	147
122	Highly Efficient Bienzyme Functionalized Nanocomposite-Based Microfluidics Biosensor Platform for Biomedical Application. Scientific Reports, 2013, 3, 2661.	3.3	76
123	Sol–Gel Derived Nanostructured Zirconia Platform for Vitamin C Detection. Journal of the Electrochemical Society, 2013, 160, H93-H97.	2.9	3
124	Nanostructured magnesium oxide biosensing platform for cholera detection. Applied Physics Letters, 2013, 102, 144106.	3.3	13
125	Ring like self assembled Ni nanoparticles based biosensor for food toxin detection. Applied Physics Letters, 2012, 100, .	3.3	65
126	Opportunities in nano-structured metal oxides based biosensors. Journal of Physics: Conference Series, 2012, 358, 012007.	0.4	12

#	Article	IF	Citations
127	Fabrication of nanocrystalline CdS electrode via chemical bath deposition technique for application to cholesterol sensor. Journal of Physics: Conference Series, 2012, 358, 012008.	0.4	0
128	Nanostructured nickel oxide film for application to fish freshness biosensor. Applied Physics Letters, 2012, 101, .	3.3	16
129	Electrophoretically fabricated core-shell CNT-DNA biowires for biosensing. Journal of Materials Chemistry, 2012, 22, 2727-2732.	6.7	12
130	Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells. Journal of Physics: Conference Series, 2012, 358, 012001.	0.4	9
131	Nanopatterned Cadmium Selenide Langmuir–Blodgett Platform for Leukemia Detection. Analytical Chemistry, 2012, 84, 3082-3089.	6.5	46
132	Chitosan encapsulated quantum dots platform for leukemia detection. Biosensors and Bioelectronics, 2012, 38, 107-113.	10.1	67
133	A novel ternary NiFe2O4/CuO/FeO-chitosan nanocomposite as a cholesterol biosensor. Process Biochemistry, 2012, 47, 2189-2198.	3.7	79
134	Mediator free cholesterol biosensor based on self-assembled monolayer platform. Analyst, The, 2012, 137, 747-753.	3.5	19
135	Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor. Applied Physics Letters, 2012, 101, 084105.	3.3	46
136	Self-assembled monolayer based electrochemical nucleic acid sensor for <i>Vibrio cholerate </i> detection. Journal of Physics: Conference Series, 2012, 358, 012009.	0.4	13
137	Electrochemical Urea Biosensor Based on Sol-gel Derived Nanostructured Cerium Oxide. Journal of Physics: Conference Series, 2012, 358, 012006.	0.4	13
138	Electrophoretically deposited CdS quantum dots based electrode for biosensor application. Journal of Materials Chemistry, 2012, 22, 4970.	6.7	40
139	Fundamentals and application of ordered molecular assemblies to affinity biosensing. Chemical Society Reviews, 2012, 41, 1363-1402.	38.1	94
140	Polypyrrole/multiwalled carbon nanotubesâ€based biosensor for cholesterol estimation. Polymers for Advanced Technologies, 2012, 23, 1084-1091.	3.2	34
141	Nanostructured platform for the detection of Neisseria gonorrhoeae using electrochemical impedance spectroscopy and differential pulse voltammetry. Mikrochimica Acta, 2012, 177, 201-210.	5.0	16
142	Nanobiocomposite platform based on polyaniline-iron oxide-carbon nanotubes for bacterial detection. Bioelectrochemistry, 2012, 86, 30-37.	4.6	51
143	Synthesis of optically active silica-coated NdF3 core–shell nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 86, 432-436.	3.9	50
144	A self assembled monolayer based microfluidic sensor for urea detection. Nanoscale, 2011, 3, 2971.	5.6	38

#	Article	IF	CITATIONS
145	Microstructured Cystine Dendrites-Based Impedimetric Sensor for Nucleic Acid Detection. Biomacromolecules, 2011, 12, 2925-2932.	5.4	31
146	Electrophoretic Fabrication of Chitosanâ^Zirconium-Oxide Nanobiocomposite Platform for Nucleic Acid Detection. Biomacromolecules, 2011, 12, 540-547.	5.4	62
147	Nanostructured metal oxide-based biosensors. NPG Asia Materials, 2011, 3, 17-24.	7.9	612
148	Zirconia grafted carbon nanotubes based biosensor for <i>M. Tuberculosis</i> detection. Applied Physics Letters, 2011, 99, .	3.3	41
149	Nanostructured nickel oxide-chitosan film for application to cholesterol sensor. Applied Physics Letters, 2011, 98, .	3.3	102
150	Optical and structural properties of nanostructured CeO2:Tb3+ film. Journal of Alloys and Compounds, 2011, 509, 262-265.	5.5	45
151	Biocompatible self-assembled monolayer platform based on (3-glycidoxypropyl)trimethoxysilane for total cholesterol estimation. Analytical Methods, 2011, 3, 2237.	2.7	33
152	P4-S1.02 Coupling of electrochemical detection with PCR amplification for sensitive detection of Neisseria gonorrhoeae. Sexually Transmitted Infections, 2011, 87, A307-A307.	1.9	0
153	Recent advances in polyaniline based biosensors. Biosensors and Bioelectronics, 2011, 26, 2811-2821.	10.1	453
154	Chitosan–iron oxide nano-composite platform for mismatch-discriminating DNA hybridization for Neisseria gonorrhoeae detection causing sexually transmitted disease. Biosensors and Bioelectronics, 2011, 26, 2967-2974.	10.1	65
155	Polyaniline Langmuir–Blodgett film based aptasensor for ochratoxin A detection. Biosensors and Bioelectronics, 2011, 26, 4006-4011.	10.1	100
156	Horse radish peroxidase immobilized polyaniline for hydrogen peroxide sensor. Polymers for Advanced Technologies, 2011, 22, 903-908.	3.2	24
157	Molecularly imprinted polyaniline film for ascorbic acid detection. Journal of Molecular Recognition, 2011, 24, 700-706.	2.1	58
158	Solâ€Gel Derived Nanostructured Metal Oxide Platform for Bacterial Detection. Electroanalysis, 2011, 23, 2699-2708.	2.9	18
159	Electrochemical genosensor based on modified octadecanethiol self-assembled monolayer for Escherichia coli detection. Sensors and Actuators B: Chemical, 2011, 151, 333-340.	7.8	32
160	Self-Assembled Monolayer Based Nucleic Acid Sensor for <l>M. Tuberculosis</l> Detection. Sensor Letters, 2011, 9, 499-506.	0.4	1
161	Nanostructured zinc oxide platform for mycotoxin detection. Bioelectrochemistry, 2010, 77, 75-81.	4.6	127
162	Nanostructured conducting polymer based reagentless capacitive immunosensor. Biomedical Microdevices, 2010, 12, 63-70.	2.8	15

#	Article	IF	Citations
163	Nanostructured Iron Oxide Platform for Impedimetric Cholesterol Detection. Electroanalysis, 2010, 22, 1045-1055.	2.9	48
164	Peptide Nucleic Acid Immobilized Biocompatible Silane Nanocomposite Platform for <i>Mycobacterium tuberculosis</i> Detection. Electroanalysis, 2010, 22, 2672-2682.	2.9	25
165	Polyaniline/Singleâ€Walled Carbon Nanotubes Composite Based Triglyceride Biosensor. Electroanalysis, 2010, 22, 2683-2693.	2.9	49
166	Electrophoretically deposited polyaniline nanotubes based film for cholesterol detection. Electrophoresis, 2010, 31, 3754-3762.	2.4	12
167	Polyaniline/carbon nanotubes platform for sexually transmitted disease detection. Journal of Molecular Recognition, 2010, 23, 472-479.	2.1	40
168	DNA biosensor for detection of Neisseria gonorrhoeae causing sexually transmitted disease. Journal of Biotechnology, 2010, 150, 357-365.	3.8	27
169	Langmuir–Blodgett films of polyaniline for low density lipoprotein detection. Thin Solid Films, 2010, 519, 1110-1114.	1.8	15
170	Sol–gel derived cerium-oxide–silicon-oxide nanocomposite for cypermethrin detection. Thin Solid Films, 2010, 519, 1122-1127.	1.8	7
171	Fabrication of Neisseria gonorrhoeae biosensor based on chitosan–MWCNT platform. Thin Solid Films, 2010, 519, 1135-1140.	1.8	19
172	Electrophoretically deposited nano-structured polyaniline film for glucose sensing. Thin Solid Films, 2010, 519, 1145-1150.	1.8	36
173	Carbon nanotubes â€" chitosan nanobiocomposite for immunosensor. Thin Solid Films, 2010, 519, 1160-1166.	1.8	39
174	Electrochemical studies of cystine modified self-assembled monolayer for Escherichia coli detection. Thin Solid Films, 2010, 519, 1178-1183.	1.8	10
175	PLD grown ZnO–K3[Fe(CN)6] composite thin film for biosensing application. Thin Solid Films, 2010, 519, 1184-1186.	1.8	4
176	A novel urea biosensor based on zirconia. Thin Solid Films, 2010, 519, 1187-1191.	1.8	41
177	Application of nanostructured ZnO films for electrochemical DNA biosensor. Thin Solid Films, 2010, 519, 1196-1201.	1.8	64
178	Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. Thin Solid Films, 2010, 519, 1213-1218.	1.8	133
179	Preparation and characterization of bio-functionalized iron oxide nanoparticles for biomedical application. Thin Solid Films, 2010, 519, 1219-1223.	1.8	22
180	Electrochemical DNA sensor for Neisseria meningitidis detection. Biosensors and Bioelectronics, 2010, 25, 2586-2591.	10.1	73

#	Article	IF	Citations
181	Polyaniline–Carboxymethyl Cellulose Nanocomposite for Cholesterol Detection. Journal of Nanoscience and Nanotechnology, 2010, 10, 6479-6488.	0.9	29
182	Zirconia based nucleic acid sensor for <i>Mycobacterium tuberculosis</i> detection. Applied Physics Letters, 2010, 96, .	3.3	70
183	An Amperomertic Uric Acid Biosensor Based on Immobilization of Uricase onto Polyaniline-multiwalled Carbon Nanotube Composite Film. Artificial Cells, Blood Substitutes, and Biotechnology, 2010, 38, 178-185.	0.9	46
184	Preparation, characterization and application of polyaniline nanospheres to biosensing. Nanoscale, 2010, 2, 747.	5.6	92
185	Self-assembled monolayer based impedimetric platform for food borne mycotoxin detection. Nanoscale, 2010, 2, 2811.	5. 6	35
186	Hybrid Cross-Linked Polyaniline-WO ₃ Nanocomposite Thin Film for NO _{<l>x</l>} Gas Sensing. Journal of Nanoscience and Nanotechnology, 2009, 9, 1792-1796.	0.9	32
187	Polyaniline-Cerium Oxide Nanocomposite for Hydrogen Peroxide Sensor. Journal of Nanoscience and Nanotechnology, 2009, 9, 4679-4685.	0.9	38
188	Nanostructured zinc oxide film for urea sensor. Materials Letters, 2009, 63, 2473-2475.	2.6	100
189	Electrochemical Cholesterol Sensor Based on Tin Oxideâ€Chitosan Nanobiocomposite Film. Electroanalysis, 2009, 21, 965-972.	2.9	103
190	Functionalized Gold Nanoparticles – Octadecylamine Hybrid Langmuirâ€Blodgett Film for Enzyme Sensor. Electroanalysis, 2009, 21, 1587-1596.	2.9	32
191	Iron oxide-chitosan nanobiocomposite for urea sensor. Sensors and Actuators B: Chemical, 2009, 138, 572-580.	7.8	205
192	Nanostructured cerium oxide film for triglyceride sensor. Sensors and Actuators B: Chemical, 2009, 141, 551-556.	7.8	86
193	Recent developments in urea biosensors. Biochemical Engineering Journal, 2009, 44, 42-52.	3.6	177
194	Poly (pyrrole-co-N-methyl pyrrole) for application to cholesterol sensor. Journal of Materials Science, 2009, 44, 954-961.	3.7	20
195	Cholesterol biosensor based on electrochemically prepared polyaniline conducting polymer film in presence of a nonionic surfactant. Journal of Polymer Research, 2009, 16, 363-373.	2.4	45
196	Recent advances in self-assembled monolayers based biomolecular electronic devices. Biosensors and Bioelectronics, 2009, 24, 2810-2817.	10.1	199
197	CtrA gene based electrochemical DNA sensor for detection of meningitis. Electrochemistry Communications, 2009, 11, 969-973.	4.7	45
198	Fumed silica nanoparticles–chitosan nanobiocomposite for ochratoxin-A detection. Electrochemistry Communications, 2009, 11, 1919-1923.	4.7	35

#	Article	IF	Citations
199	Nanostructured zirconium oxide based genosensor for Escherichia coli detection. Electrochemistry Communications, 2009, 11 , 2272-2277.	4.7	48
200	Metal oxide–chitosan based nanocomposite for cholesterol biosensor. Thin Solid Films, 2009, 518, 614-620.	1.8	63
201	Low density lipoprotein sensor based on surface plasmon resonance. Thin Solid Films, 2009, 518, 719-723.	1.8	10
202	Multi-walled carbon nanotubes/sol–gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor. Sensors and Actuators B: Chemical, 2009, 137, 727-735.	7.8	121
203	Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film. Journal of Biotechnology, 2009, 142, 179-184.	3.8	132
204	Polyaniline nanotubes for impedimetric triglyceride detection. Electrochemistry Communications, 2009, 11, 1482-1486.	4.7	56
205	Nanoporous cerium oxide thin film for glucose biosensor. Biosensors and Bioelectronics, 2009, 24, 2040-2045.	10.1	116
206	STD sensor based on nucleic acid functionalized nanostructured polyaniline. Biosensors and Bioelectronics, 2009, 24, 2232-2238.	10.1	59
207	Langmuir–Blodgett film based on MEH-PPV for cholesterol biosensor. Analytica Chimica Acta, 2009, 634, 243-249.	5.4	24
208	Zinc oxide–potassium ferricyanide composite thin film matrix for biosensing applications. Analytica Chimica Acta, 2009, 653, 212-216.	5.4	32
209	Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. Biochemical Engineering Journal, 2009, 46, 132-140.	3.6	72
210	Low Density Lipoprotein Detection Based on Antibody Immobilized Self-Assembled Monolayer: Investigations of Kinetic and Thermodynamic Properties. Journal of Physical Chemistry B, 2009, 113, 14405-14412.	2.6	42
211	Cerium oxide-chitosan based nanobiocomposite for food borne mycotoxin detection. Applied Physics Letters, 2009, 95, .	3.3	66
212	Sol-gel-derived titanium oxide–cerium oxide biocompatible nanocomposite film for urea sensor. Journal of Materials Research, 2009, 24, 1667-1673.	2.6	33
213	Sol–gel derived nano-structured zinc oxide film for sexually transmitted disease sensor. Analyst, The, 2009, 134, 997.	3.5	59
214	Nanostructured zinc oxide platform for cholesterol sensor. Applied Physics Letters, 2009, 94, 143901.	3.3	105
215	Surface plasmon resonance-based DNA biosensor for arsenic trioxide detection. International Journal of Environmental Analytical Chemistry, 2009, 89, 49-57.	3.3	17
216	A nanostructured cerium oxide film-based immunosensor for mycotoxin detection. Nanotechnology, 2009, 20, 055105.	2.6	106

#	Article	IF	Citations
217	Sol–Gel Derived Nanostructured Tin Oxide Film for Glucose Sensor. Sensor Letters, 2009, 7, 64-71.	0.4	13
218	Electrochemical characterization of self-assembled monolayers (SAMs) of thiophenol and aminothiophenols on polycrystalline Au: Effects of potential cycling and mixed SAM formation. Journal of Electroanalytical Chemistry, 2008, 619-620, 87-97.	3.8	25
219	Recent advances in cholesterol biosensor. Biosensors and Bioelectronics, 2008, 23, 1083-1100.	10.1	236
220	Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosensors and Bioelectronics, 2008, 24, 676-683.	10.1	422
221	Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique. Biomedical Microdevices, 2008, 10, 757-767.	2.8	40
222	Nucleic acid sensor for insecticide detection. Journal of Molecular Recognition, 2008, 21, 217-223.	2.1	14
223	Selfâ€assembled monolayer for low density lipoprotein detection. Journal of Molecular Recognition, 2008, 21, 419-424.	2.1	13
224	Polythiophene gold nanoparticles composite film for application to glucose sensor. Journal of Applied Polymer Science, 2008, 110, 988-994.	2.6	18
225	Chitosan–iron oxide nanobiocomposite based immunosensor for ochratoxin-A. Electrochemistry Communications, 2008, 10, 1364-1368.	4.7	130
226	Preparation of polyaniline/multiwalled carbon nanotube composite by novel electrophoretic route. Carbon, 2008, 46, 1727-1735.	10.3	118
227	Polyaniline–carbon nanotube composite film for cholesterol biosensor. Analytical Biochemistry, 2008, 383, 194-199.	2.4	139
228	Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Analytica Chimica Acta, 2008, 616, 207-213.	5.4	250
229	Nucleic acid immobilized polypyrrole–polyvinylsulphonate film for Mycobacterium tuberculosis detection. Electrochemistry Communications, 2008, 10, 821-826.	4.7	38
230	Sol–gel derived nanoporous cerium oxide film for application to cholesterol biosensor. Electrochemistry Communications, 2008, 10, 1246-1249.	4.7	213
231	Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate. Electrochimica Acta, 2008, 53, 4344-4350.	5.2	48
232	Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance. Analyst, The, 2008, 133, 1587.	3.5	81
233	Zinc oxide-chitosan nanobiocomposite for urea sensor. Applied Physics Letters, 2008, 93, .	3.3	111
234	Sol-gel derived nanostructured cerium oxide film for glucose sensor. Applied Physics Letters, 2008, 92, .	3.3	138

#	Article	IF	Citations
235	Prospects of Nanomaterials in Biosensors. Analytical Letters, 2008, 41, 159-209.	1.8	174
236	Polyaniline Based Nucleic Acid Sensor. Journal of Physical Chemistry B, 2008, 112, 4808-4816.	2.6	70
237	CeO2 thin film for mediator-less glucose biosensors. Materials Research Society Symposia Proceedings, 2008, 1138, 1.	0.1	2
238	Conducting Polymer Based Nucleic Acid Sensor for Environment Monitoring. IEICE Transactions on Electronics, 2008, E91-C, 1889-1893.	0.6	1
239	Polyaniline Langmuirâ^'Blodgett Film Based Cholesterol Biosensor. Langmuir, 2007, 23, 13188-13192.	3.5	98
240	<i>Escherichia coli</i> Genosensor Based on Polyaniline. Analytical Chemistry, 2007, 79, 6152-6158.	6.5	83
241	Application of Thiolated Gold Nanoparticles for the Enhancement of Glucose Oxidase Activity. Langmuir, 2007, 23, 3333-3337.	3.5	227
242	Cholesterol Biosensor Based on Amino-Undecanethiol Self-Assembled Monolayer Using Surface Plasmon Resonance Technique. Langmuir, 2007, 23, 7398-7403.	3.5	57
243	Dithiobissuccinimidyl propionate self assembled monolayer based cholesterol biosensor. Analyst, The, 2007, 132, 1005.	3.5	26
244	Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film. Applied Physics Letters, 2007, 91, .	3.3	239
245	Application of conducting poly(aniline-co-pyrrole) film to cholesterol biosensor. Journal of Applied Polymer Science, 2007, 105, 3211-3219.	2.6	23
246	Poly-(3-hexylthiophene) self-assembled monolayer based cholesterol biosensor using surface plasmon resonance technique. Biosensors and Bioelectronics, 2007, 22, 2516-2524.	10.1	78
247	Cholesterol biosensor based on N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane self-assembled monolayer. Analytical Biochemistry, 2007, 363, 210-218.	2.4	103
248	DNA entrapped polypyrrole–polyvinyl sulfonate film for application to electrochemical biosensor. Analytical Biochemistry, 2007, 366, 71-79.	2.4	43
249	Immobilization of cholesterol esterase and cholesterol oxidase onto sol–gel films for application to cholesterol biosensor. Analytica Chimica Acta, 2007, 582, 335-343.	5.4	71
250	Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor. Analytica Chimica Acta, 2007, 589, 6-13.	5.4	60
251	Improved performance of polyaniline-uricase biosensor. Analytica Chimica Acta, 2007, 594, 17-23.	5.4	83
252	Application of electrochemically prepared poly-N-methylpyrrole-p-toluene sulphonate films to cholesterol biosensor. Sensors and Actuators B: Chemical, 2007, 123, 829-839.	7.8	45

#	Article	IF	Citations
253	Immobilization of single stranded DNA probe onto polypyrrole-polyvinyl sulfonate for application to DNA hybridization biosensor. Sensors and Actuators B: Chemical, 2007, 126, 655-663.	7.8	55
254	Biosensor for total cholesterol estimation using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane self-assembled monolayer. Analytical and Bioanalytical Chemistry, 2007, 389, 2235-2242.	3.7	21
255	Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension. Analytica Chimica Acta, 2007, 602, 244-251.	5.4	112
256	Ultrasensitive DNA hybridization biosensor based on polyaniline. Biosensors and Bioelectronics, 2007, 23, 613-620.	10.1	79
257	Application of octadecanethiol self-assembled monolayer to cholesterol biosensor based on surface plasmon resonance technique. Talanta, 2006, 69, 918-926.	5.5	81
258	Application of electrochemically prepared polypyrrole–polyvinyl sulphonate films to DNA biosensor. Biosensors and Bioelectronics, 2006, 21, 1777-1783.	10.1	126
259	Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor. Analytica Chimica Acta, 2006, 568, 126-132.	5.4	122
260	Recent developments in bio-molecular electronics techniques for food pathogens. Analytica Chimica Acta, 2006, 568, 259-274.	5.4	92
261	Prospects of conducting polymers in biosensors. Analytica Chimica Acta, 2006, 578, 59-74.	5.4	349
262	Cholesterol biosensor based on cholesterol esterase, cholesterol oxidase and peroxidase immobilized onto conducting polyaniline films. Sensors and Actuators B: Chemical, 2006, 115, 534-541.	7.8	191
263	Application of polyaniline as enzyme based biosensor. Current Applied Physics, 2005, 5, 174-177.	2.4	37
264	Recent trends in biosensors. Current Applied Physics, 2005, 5, 92-97.	2.4	126
265	Biosensor based on Langmuir–Blodgett films of poly(3-hexyl thiophene) for detection of galactose in human blood. Biotechnology Letters, 2004, 26, 645-647.	2.2	19
266	Immobilization of glucose oxidase onto electrochemically prepared poly(aniline-co-fluoroaniline) films. Journal of Applied Polymer Science, 2004, 91, 3999-4006.	2.6	28
267	Preparation and characterization of an enzyme electrode based on cholesterol esterase and cholesterol oxidase immobilized onto conducting polypyrrole films. Journal of Applied Polymer Science, 2004, 91, 3769-3773.	2.6	20
268	Immobilization of glucose oxidase onto electrochemically prepared poly(aniline-co-fluoroaniline) films. Journal of Applied Polymer Science, 2004, 92, 1374-1374.	2.6	4
269	Poly-3-hexyl thiophene Langmuir-Blodgett films for application to glucose biosensor. Biotechnology and Bioengineering, 2004, 85, 277-282.	3.3	40
270	Langmuir–Blodgett film based biosensor for estimation of galactose in milk. Electrochimica Acta, 2004, 49, 2479-2485.	5.2	51

#	Article	IF	CITATIONS
271	Amperometric cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on conducting polypyrrole films. Analytica Chimica Acta, 2004, 502, 229-234.	5.4	139
272	Lactose biosensor based on Langmuir–Blodgett films of poly(3-hexyl thiophene). Biosensors and Bioelectronics, 2004, 20, 651-657.	10.1	63
273	Conducting polymer based biomolecular electronic devices. Pramana - Journal of Physics, 2003, 61, 331-343.	1.8	21
274	Characterization of electrochemically synthesized poly(2-fluoroaniline) film and its application to glucose biosensor. Current Applied Physics, 2003, 3, 239-245.	2.4	46
275	Prospects of conducting polymers in molecular electronics. Current Applied Physics, 2003, 3, 293-305.	2.4	246
276	An experimental set-up for the study of electromechanical properties of conducting polymer films. Current Applied Physics, 2003, 3, 317-320.	2.4	3
277	Biosensors for clinical diagnostics industry. Sensors and Actuators B: Chemical, 2003, 91, 117-127.	7.8	254
278	Immobilization of glucose oxidase onto Langmuir–Blodgett films of poly-3-hexylthiophene. Current Applied Physics, 2003, 3, 275-279.	2.4	36
279	Application of Polyaniline/Sol-Gel Derived Tetraethylorthosilicate Films to an Amperometric Lactate Biosensor. Analytical Sciences, 2003, 19, 1477-1480.	1.6	16
280	Chapter 3 Electrochemical biosensors. Advances in Biosensors, 2003, , 63-100.	0.2	8
281	Chapter 4 Diagnostics applications of enzyme-doped sol-gel derived glasses. Advances in Biosensors, 2003, , 101-130.	0.2	1
282	Covalent immobilization of urease on polypyrrole microspheres for application as a urea biosensor. E-Polymers, 2002, 2, .	3.0	3
283	Immobilization of urease on poly(N-vinyl carbazole)/stearic acid Langmuir–Blodgett films for application to urea biosensor. Biosensors and Bioelectronics, 2002, 17, 697-703.	10.1	93
284	Langmuir–Blodgett films of poly(3-dodecyl thiophene) for application to glucose biosensor. Sensors and Actuators B: Chemical, 2002, 86, 42-48.	7.8	77
285	Application of conducting polymers to biosensors. Biosensors and Bioelectronics, 2002, 17, 345-359.	10.1	1,457
286	Mediated biosensors. Biosensors and Bioelectronics, 2002, 17, 441-456.	10.1	695
287	Synthesis and characterization of a copolymer: Poly(aniline-co-fluoroaniline). Journal of Applied Polymer Science, 2001, 81, 1460-1466.	2.6	84
288	Immobilization of cholesterol oxidase and potassium ferricyanide on dodecylbenzene sulfonate ion-doped polypyrrole film. Journal of Applied Polymer Science, 2001, 82, 3486-3491.	2.6	112

#	Article	IF	Citations
289	Immobilization of lactate dehydrogenase on electrochemically prepared polypyrrole–polyvinylsulphonate composite films for application to lactate biosensors. Electrochimica Acta, 2001, 46, 723-729.	5.2	107
290	Special Issue on Biomolecular Electronics - Interfacing Physics and Chemistry with Biology. Applied Biochemistry and Biotechnology, 2001, 96, 001-002.	2.9	0
291	National Symposium on Biomolecular Electronics - Interfacing Physics and Chemistry with Biology. Applied Biochemistry and Biotechnology, 2001, 96, 003-008.	2.9	0
292	Synthesis and Characterization of Fluoro-Substituted Polyaniline. Applied Biochemistry and Biotechnology, 2001, 96, 155-166.	2.9	17
293	Coimmobilization of Urease and Glutamate Dehydrogenase in Electrochemically Prepared Polypyrrole - Polyvinyl Sulfonate Films. Applied Biochemistry and Biotechnology, 2001, 96, 249-258.	2.9	85
294	Immobilization of Lactate Dehydrogenase on Tetraethylorthosilicate-Derived Sol-Gel Films for Application to Lactate Biosensor. Applied Biochemistry and Biotechnology, 2001, 96, 303-312.	2.9	21
295	Characterization of DNA Immobilized on Electrochemically Prepared Conducting Polypyrrole - Polyvinyl Sulfonate Films. Applied Biochemistry and Biotechnology, 2001, 96, 313-320.	2.9	11
296	Immobilization of lactate dehydrogenase on tetraethylorthosilicate-derived sol-gel films for application to lactate biosensor. Applied Biochemistry and Biotechnology, 2001, 96, 293-301.	2.9	3
297	Thermal analysis of chemically synthesized polyemeraldine base. Journal of Applied Polymer Science, 2000, 75, 149-155.	2.6	35
298	Covalent immobilization of glucose oxidase to poly(O-amino benzoic acid) for application to glucose biosensor. Journal of Applied Polymer Science, 2000, 78, 662-667.	2.6	98
299	Co-immobilization of lactate oxidase and lactate dehydrogenase on conducting polyaniline films. Analytica Chimica Acta, 2000, 407, 97-103.	5.4	117
300	Co-immobilization of cholesterol oxidase and horseradish peroxidase in a sol–gel film. Analytica Chimica Acta, 2000, 414, 43-50.	5.4	129
301	Time-of-Flight Photocarrier Mobility in Langmuir-Blodgett Films of Regioregular Poly(3-hexylthiophene). Japanese Journal of Applied Physics, 1999, 38, 6768-6771.	1.5	12
302	Characteristics of aqueous polycarbazole batteries. Journal of Applied Polymer Science, 1999, 74, 145-150.	2.6	76
303	Immobilization of Lactate Dehydrogenase on Electrochemically Prepared Polyaniline Films. Electroanalysis, 1999, 11, 450-452.	2.9	51
304	Characteristics of aqueous polycarbazole batteries. , 1999, 74, 145.		1
305	Enhanced loading of glucose oxidase on polyaniline films based on anion exchange. Journal of Applied Polymer Science, 1998, 70, 1447-1453.	2.6	28
306	Dielectric relaxation in thin conducting polyaniline films. Polymer, 1998, 39, 3399-3404.	3.8	34

#	Article	IF	CITATIONS
307	Electrochromic properties of polycarbazole films. Polymer, 1997, 38, 1625-1629.	3.8	71
308	Immobilization and Characterization of Lactate Dehydrogenase on TEOS Derived Sol-Gel Films. Journal of Sol-Gel Science and Technology, 1997, 10, 309-316.	2.4	30
309	Electrical properties of metal/Langmuir-Blodgett (polymeraldine base) layer/metal devices. Journal of Applied Polymer Science, 1997, 63, 141-145.	2.6	16
310	Electrical properties of metal (indium)/polyaniline Schottky devices. Journal of Applied Polymer Science, 1997, 65, 2745-2748.	2.6	41
311	Electrochemical Growth of Polyaniline in Porous Solâ^'Gel Films. Chemistry of Materials, 1996, 8, 822-824.	6.7	75
312	Simulation of Electrochemical Process for Glucose Oxidase Immobilized Conducting Polymer Electrodes. Analytical Letters, 1996, 29, 1477-1484.	1.8	9
313	Polycarbazoleâ€filmâ€coated electrodes as electrochromic devices. Advanced Materials for Optics and Electronics, 1996, 6, 399-402.	0.4	11
314	Electrical properties of metal/Langmuir–Blodgett layer/semiconductive devices. Journal of Applied Polymer Science, 1996, 60, 407-411.	2.6	10
315	Dielectric spectroscopic studies on polypyrrole glucose oxidase films. Journal of Applied Polymer Science, 1996, 60, 2309-2316.	2.6	17
316	Preparation and characterization of Langmuir-Blodgett films of polyemeraldine base. Polymer, 1996, 37, 4809-4813.	3.8	11
317	Electrochromic response of thin polypyrrole film in semi-solid electrolyte. Journal of Materials Science Letters, 1996, 15, 997.	0.5	10
318	Immobilization of glucose oxidase in electrochemically prepared polypyrrole films. Journal of Materials Science Letters, 1996, 15, 124-128.	0.5	13
319	lon exchanged polypyrrole-based glucose biosensor: Enhanced loading and response. Electroanalysis, 1995, 7, 579-582.	2.9	16
320	Influence of pH on the electroactivity of polycarbazole. Materials Science and Engineering C, 1995, 3, 215-218.	7.3	19
321	Application of polyaniline-Langmuir-Blodgett films as a glucose biosensor. Materials Science and Engineering C, 1995, 3, 159-163.	7.3	68
322	Novel electrochromism phenomenon observed in polyaniline films. Synthetic Metals, 1995, 75, 119-122.	3.9	18
323	Electroactivity and proton doping of polycarbazole. Journal of Materials Science Letters, 1995, 14, 401-404.	0.5	18
324	AC conductivity of polyemeraldine base. Journal of Physics Condensed Matter, 1994, 6, 8913-8922.	1.8	9

#	Article	IF	CITATIONS
325	Performance of electrochromic cells of polyaniline in polymeric electrolytes. Journal of Materials Science Letters, 1994, 13, 1490-1493.	0.5	33
326	Application of poly(aniline) as a glucose biosensor. Sensors and Actuators B: Chemical, 1994, 21, 165-169.	7.8	38
327	Glucose Biosensor Based on a Sol-Gel-Derived Platform. Analytical Chemistry, 1994, 66, 3139-3144.	6.5	265
328	A Novel Protocol to Entrap Active Urease in a Tetraethoxysilane-Derived Sol-Gel Thin-Film Architecture. Chemistry of Materials, 1994, 6, 1596-1598.	6.7	73
329	Optical and electrical characteristics of electrodeposited polypyrrole films. Journal of Applied Polymer Science, 1993, 50, 411-417.	2.6	13
330	Photocarrier mobility in processable polyaniline. Journal of Applied Physics, 1993, 74, 2109-2111.	2.5	22
331	Muon studies of conducting polymers. Synthetic Metals, 1993, 55, 677-684.	3.9	19
332	Synthesis and characterization of poly(aniline-co-o-anisidine). A processable conducting copolymer. Macromolecules, 1993, 26, 3190-3193.	4.8	131
333	Langmuir-Blodgett films of processable polyaniline. The Journal of Physical Chemistry, 1993, 97, 11580-11582.	2.9	57
334	Interfacial polarization in semiconducting polypyrrole thin films. Journal of Physics Condensed Matter, 1992, 4, 5747-5756.	1.8	26
335	Vacuumâ€deposited metal/polyaniline Schottky device. Applied Physics Letters, 1992, 61, 1219-1221.	3.3	72
336	Some recent studies on metal/polyaniline schottky devices. Journal of Applied Polymer Science, 1992, 44, 911-915.	2.6	44
337	Metal/semiconductive polymer Schottky device. Applied Physics Letters, 1991, 58, 51-52.	3.3	137
338	Metal/Semiconducting Polyaniline Heterojunctions. , 1991, , 401-405.		0
339	Polyaniline/Polymeric acid composite, a novel conducting rubber. Journal of Applied Polymer Science, 1990, 40, 1049-1052.	2.6	88
340	Poly-α-naphthalene oxide-pyrrole: A new electro-chemically-generated conducting polymer. Synthetic Metals, 1989, 31, 155-162.	3.9	55
341	Defects in conducting polymers. Bulletin of Materials Science, 1988, 10, 85-96.	1.7	8
342	Recent studies of heterocyclic and aromatic conducting polymers. Progress in Polymer Science, 1986, 12, 179-218.	24.7	55

#	Article	IF	CITATIONS
343	Electrochemical copolymerization and doping of phenylene oxide–pyrrole: A new conducting polymer. Journal of Polymer Science, Polymer Letters Edition, 1985, 23, 57-61.	0.4	29
344	Is the glass transition in some super-cooled polyphenyls preceded by molecular cluster formation?. Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 108, 153-156.	2.1	5
345	Polyaniline-based biosensors. Nanobiosensors in Disease Diagnosis, 0, , 25.	0.0	21