Jafar Hasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2853024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spiked Titanium Nanostructures That Inhibit Anaerobic Dental Pathogens. ACS Applied Nano Materials, 2022, 5, 12051-12062.	5.0	13
2	Nanomechanical tribological characterisation of nanostructured titanium alloy surfaces using AFM: A friction vs velocity study. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112600.	5.0	7
3	Mechanics of Bacterial Interaction and Death on Nanopatterned Surfaces. Biophysical Journal, 2021, 120, 217-231.	0.5	51
4	Bactericidal efficiency of micro- and nanostructured surfaces: a critical perspective. RSC Advances, 2021, 11, 1883-1900.	3.6	19
5	A systematic approach towards biomimicry of nanopatterned cicada wings on titanium using electron beam lithography. Nanotechnology, 2021, 32, 065301.	2.6	6
6	Trends in Bactericidal Nanostructured Surfaces: An Analytical Perspective. ACS Applied Bio Materials, 2021, 4, 7626-7642.	4.6	10
7	Hydrothermally etched titanium: a review on a promising mechano-bactericidal surface for implant applications. Materials Today Chemistry, 2021, 22, 100622.	3.5	27
8	Antiviral Nanostructured Surfaces Reduce the Viability of SARS-CoV-2. ACS Biomaterials Science and Engineering, 2020, 6, 4858-4861.	5.2	52
9	Antiviral and Antibacterial Nanostructured Surfaces with Excellent Mechanical Properties for Hospital Applications. ACS Biomaterials Science and Engineering, 2020, 6, 3608-3618.	5.2	88
10	Evaluation of Particle Beam Lithography for Fabrication of Metallic Nano-structures. Procedia Manufacturing, 2019, 30, 261-267.	1.9	12
11	Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars. Journal of Materials Chemistry B, 2019, 7, 1300-1310.	5.8	63
12	Mimicking Insect Wings: The Roadmap to Bioinspiration. ACS Biomaterials Science and Engineering, 2019, 5, 3139-3160.	5.2	42
13	A nanopillar array on black titanium prepared by reactive ion etching augments cardiomyogenic commitment of stem cells. Nanoscale, 2019, 11, 20766-20776.	5.6	13
14	Engineering an in vitro organotypic model for studying cardiac hypertrophy. Colloids and Surfaces B: Biointerfaces, 2018, 165, 355-362.	5.0	18
15	Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria. Materials and Design, 2018, 140, 332-344.	7.0	87
16	Nanoscale Topography on Black Titanium Imparts Multi-biofunctional Properties for Orthopedic Applications. Scientific Reports, 2017, 7, 41118.	3.3	111
17	Engineering a nanostructured "super surface―with superhydrophobic and superkilling properties. RSC Advances, 2015, 5, 44953-44959.	3.6	128
18	Recent advances in engineering topography mediated antibacterial surfaces. Nanoscale, 2015, 7, 15568-15575.	5.6	143

JAFAR HASAN

#	Article	IF	CITATIONS
19	Wing wettability of Odonata species as a function of quantity of epicuticular waxes. Vibrational Spectroscopy, 2014, 75, 173-177.	2.2	12
20	Continuous-Flow Synthesis of Regioregular Poly(3-Hexylthiophene): Ultrafast Polymerization with High Throughput and Low Polydispersity Index. Journal of Flow Chemistry, 2014, 4, 206-210.	1.9	12
21	Bactericidal activity of black silicon. Nature Communications, 2013, 4, 2838.	12.8	731
22	Bacterial attachment on sub-nanometrically smooth titanium substrata. Biofouling, 2013, 29, 163-170.	2.2	31
23	Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Applied Microbiology and Biotechnology, 2013, 97, 9257-9262.	3.6	270
24	Biophysical Model of Bacterial Cell Interactions with Nanopatterned Cicada Wing Surfaces. Biophysical Journal, 2013, 104, 835-840.	0.5	496
25	Antibacterial surfaces: the quest for a new generation of biomaterials. Trends in Biotechnology, 2013, 31, 295-304.	9.3	805
26	Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings. Colloids and Surfaces B: Biointerfaces, 2013, 106, 126-134.	5.0	64
27	High-spatial-resolution mapping of superhydrophobic cicada wing surface chemistry using infrared microspectroscopy and infrared imaging at two synchrotron beamlines. Journal of Synchrotron Radiation, 2013, 20, 482-489.	2.4	24
28	Molecular Organization of the Nanoscale Surface Structures of the Dragonfly Hemianax papuensis Wing Epicuticle. PLoS ONE, 2013, 8, e67893.	2.5	61
29	Surface topographical factors influencing bacterial attachment. Advances in Colloid and Interface Science, 2012, 179-182, 142-149.	14.7	285
30	Influence of Titanium Alloying Element Substrata on Bacterial Adhesion. Advanced Materials Research, 2012, 535-537, 992-995.	0.3	1
31	Spatial Variations and Temporal Metastability of the Self-Cleaning and Superhydrophobic Properties of Damselfly Wings. Langmuir, 2012, 28, 17404-17409.	3.5	55
32	Roughness Parameters for Standard Description of Surface Nanoarchitecture. Scanning, 2012, 34, 257-263.	1.5	65
33	Natural Bactericidal Surfaces: Mechanical Rupture of <i>Pseudomonas aeruginosa</i> Cells by Cicada Wings. Small, 2012, 8, 2489-2494.	10.0	742
34	Physico-mechanical characterisation of cells using atomic force microscopy — Current research and methodologies. Journal of Microbiological Methods, 2011, 86, 131-139.	1.6	59
35	The influence of nanoscopically thin silver films on bacterial viability and attachment. Applied Microbiology and Biotechnology, 2011, 91, 1149-1157.	3.6	40
36	Nature Inspired Structured Surfaces for Biomedical Applications. Current Medicinal Chemistry, 2011, 18, 3367-3375.	2.4	59

#	Article	IF	CITATIONS
37	Fabrication of Ti14Nb4Sn Alloys for Bone Tissue Engineering Applications. Key Engineering Materials, 0, 520, 214-219.	0.4	1