Akinola D Oyedele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/285298/publications.pdf

Version: 2024-02-01

20 papers 1,307 citations

16 h-index 752698 20 g-index

20 all docs 20 docs citations

20 times ranked 2202 citing authors

#	Article	IF	CITATIONS
1	PdSe ₂ : Pentagonal Two-Dimensional Layers with High Air Stability for Electronics. Journal of the American Chemical Society, 2017, 139, 14090-14097.	13.7	509
2	Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe _{2a²'<i>x</i>} Crystals. Nano Letters, 2016, 16, 5213-5220.	9.1	121
3	High-performance multilayer WSe2 field-effect transistors with carrier type control. Nano Research, 2018, 11, 722-730.	10.4	101
4	Defect-Mediated Phase Transformation in Anisotropic Two-Dimensional PdSe ₂ Crystals for Seamless Electrical Contacts. Journal of the American Chemical Society, 2019, 141, 8928-8936.	13.7	81
5	Twoâ€Dimensional Palladium Diselenide with Strong Inâ€Plane Optical Anisotropy and High Mobility Grown by Chemical Vapor Deposition. Advanced Materials, 2020, 32, e1906238.	21.0	81
6	Anomalous interlayer vibrations in strongly coupled layered PdSe ₂ . 2D Materials, 2018, 5, 035016.	4.4	60
7	High Conduction Hopping Behavior Induced in Transition Metal Dichalcogenides by Percolating Defect Networks: Toward Atomically Thin Circuits. Advanced Functional Materials, 2017, 27, 1702829.	14.9	52
8	Strain tolerance of two-dimensional crystal growth on curved surfaces. Science Advances, 2019, 5, eaav4028.	10.3	46
9	Exploiting the potential of 2-((5-(4-(diphenylamino)phenyl)thiophen-2-yl)methylene)malononitrile as an efficient donor molecule in vacuum-processed bulk-heterojunction organic solar cells. RSC Advances, 2014, 4, 5236.	3.6	42
10	High performance top-gated multilayer WSe ₂ field effect transistors. Nanotechnology, 2017, 28, 475202.	2.6	33
11	Atmospheric and Long-term Aging Effects on the Electrical Properties of Variable Thickness WSe ₂ Transistors. ACS Applied Materials & Interfaces, 2018, 10, 36540-36548.	8.0	31
12	Surfactant-Mediated Growth and Patterning of Atomically Thin Transition Metal Dichalcogenides. ACS Nano, 2020, 14, 6570-6581.	14.6	30
13	Anisotropic Phonon Response of Few‣ayer PdSe ₂ under Uniaxial Strain. Advanced Functional Materials, 2020, 30, 2003215.	14.9	26
14	Photocarrier Transfer across Monolayer MoS ₂ â€"MoSe ₂ Lateral Heterojunctions. ACS Nano, 2018, 12, 7086-7092.	14.6	25
15	The growth and assembly of organic molecules and inorganic 2D materials on graphene for van der Waals heterostructures. Carbon, 2018, 131, 246-257.	10.3	21
16	Atomically Precise PdSe2 Pentagonal Nanoribbons. ACS Nano, 2020, 14, 1951-1957.	14.6	21
17	Ion Migration Studies in Exfoliated 2D Molybdenum Oxide via Ionic Liquid Gating for Neuromorphic Device Applications. ACS Applied Materials & Device Applications. ACS Applied Materials & Device Applications.	8.0	12
18	Hierarchical Model for the Analysis of Scattering Data of Complex Materials. Jom, 2016, 68, 1583-1588.	1.9	8

#	# ARTICLE	IF	CITATIONS
19	Evaluation of nano- and mesoscale structural features in composite decomposition of the radial distribution function. Journal of Applied	naterials through hierarchical Crystallography, 2018, 51, 76-86.	5
20	2D Materials: Twoâ€Dimensional Palladium Diselenide with Strong Inâ€Plane Optical Anisotropy and High Mobility Grown by Chemical Vapor Deposition (Adv. Mater. 19/2020). Advanced Materials, 2020, 32, 2070152.) 2