
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2851772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly luminescent red-emitting In(Zn)P quantum dots using zinc oxo cluster: synthesis and application to light-emitting diodes. Nanoscale, 2022, 14, 2771-2779.	2.8	7
2	Highly Sensitive and Durable Organic Photodiodes Based on Long-Term Storable NiO _{<i>x</i>} Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 14410-14421.	4.0	1
3	Tailorâ€Made Charged Catecholâ€Based Polymeric Ligands to Build Robust Fuel Cells Containing Antioxidative Nanoparticles. Advanced Electronic Materials, 2022, 8, .	2.6	6
4	Highly Emissive Blue Quantum Dots with Superior Thermal Stability via In Situ Surface Reconstruction of Mixed CsPbBr ₃ –Cs ₄ PbBr ₆ Nanocrystals. Advanced Science, 2022, 9, e2104660.	5.6	20
5	Highly sensitive pregnancy test kit via oriented antibody conjugation on brush-type ligand-coated quantum beads. Biosensors and Bioelectronics, 2022, 213, 114441.	5.3	9
6	Molecularly Smooth and Conformal Nanocoating by Amine-Mediated Redox Modulation of Catechol. Chemistry of Materials, 2021, 33, 952-965.	3.2	9
7	Bandgap Modulation of Cs ₂ AgInX ₆ (X = Cl and Br) Double Perovskite Nano- and Microcrystals via Cu ²⁺ Doping. ACS Omega, 2021, 6, 26952-26958.	1.6	14
8	Charge-Modulated Synthesis of Highly Stable Iron Oxide Nanoparticles for In Vitro and In Vivo Toxicity Evaluation. Nanomaterials, 2021, 11, 3068.	1.9	9
9	Superparamagnetic NiO-doped mesoporous silica flower-like microspheres with high nickel content. Journal of Industrial and Engineering Chemistry, 2020, 81, 99-107.	2.9	7
10	High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells. Scientific Reports, 2020, 10, 18055.	1.6	25
11	Colloidal Suprastructures Self-Organized from Oppositely Charged All-Inorganic Nanoparticles. Chemistry of Materials, 2020, 32, 8662-8671.	3.2	7
12	Eco-Friendly Synthesis of Water-Glass-Based Silica Aerogels via Catechol-Based Modifier. Nanomaterials, 2020, 10, 2406.	1.9	6
13	Control of Particle Dispersion with Autophobic Dewetting in Polymer Nanocomposites. Macromolecules, 2020, 53, 4836-4844.	2.2	9
14	Development of Recombinant Immunoglobulin G-Binding Luciferase-Based Signal Amplifiers in Immunoassays. Analytical Chemistry, 2020, 92, 5473-5481.	3.2	6
15	Zinc Oxo Clusters Improve the Optoelectronic Properties on Indium Phosphide Quantum Dots. Chemistry of Materials, 2020, 32, 2795-2802.	3.2	20
16	Direct Chemical Imaging of Ligand-Functionalized Single Nanoparticles by Photoinduced Force Microscopy. Journal of Physical Chemistry Letters, 2020, 11, 5785-5791.	2.1	7
17	Synthesis and characterization of In1â^'Ga P@ZnS alloy core-shell type colloidal quantum dots. Journal of Industrial and Engineering Chemistry, 2020, 88, 106-110.	2.9	10
18	Synthesis of nano-sized urchin-shaped LiFePO ₄ for lithium ion batteries. RSC Advances, 2019, 9, 13714-13721.	1.7	19

#	Article	IF	CITATIONS
19	Facile synthesis and direct characterization of surface-charge-controlled magnetic iron oxide nanoparticles and their role in gene transfection in human leukemic T cell. Applied Surface Science, 2019, 483, 1069-1080.	3.1	15
20	Insertion of an Inorganic Barrier Layer as a Method of Improving the Performance of Quantum Dot Light-Emitting Diodes. ACS Photonics, 2019, 6, 743-748.	3.2	23
21	Surface Ligand Engineering for Efficient Perovskite Nanocrystal-Based Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 8428-8435.	4.0	130
22	High-Performance CsPbX ₃ Perovskite Quantum-Dot Light-Emitting Devices via Solid-State Ligand Exchange. ACS Applied Nano Materials, 2018, 1, 488-496.	2.4	102
23	Paclitaxel-induced formation of 3D nanocrystal superlattices within injectable protein-based hybrid nanoparticles. Chemical Communications, 2018, 54, 11586-11589.	2.2	4
24	Bio-Inspired Catecholamine-Derived Surface Modifier for Graphene-Based Organic Solar Cells. ACS Applied Energy Materials, 2018, 1, 6463-6468.	2.5	12
25	Enhanced Mechanical Properties of Polymer Nanocomposites Using Dopamine-Modified Polymers at Nanoparticle Surfaces in Very Low Molecular Weight Polymers. ACS Macro Letters, 2018, 7, 962-967.	2.3	23
26	Facile Method to Prepare for the Ni ₂ P Nanostructures with Controlled Crystallinity and Morphology as Anode Materials of Lithium-Ion Batteries. ACS Omega, 2018, 3, 7655-7662.	1.6	20
27	Coordination Polymers for High-Capacity Li-Ion Batteries: Metal-Dependent Solid-State Reversibility. ACS Applied Materials & Interfaces, 2018, 10, 22110-22118.	4.0	31
28	Large-Scale Synthesis of Highly Luminescent InP@ZnS Quantum Dots Using Elemental Phosphorus Precursor. Chemistry of Materials, 2017, 29, 4236-4243.	3.2	65
29	Seed-mediated synthesis of ultra-long copper nanowires and their application as transparent conducting electrodes. Applied Surface Science, 2017, 422, 731-737.	3.1	31
30	Transition Metal-Based Thiometallates as Surface Ligands for Functionalization of All-Inorganic Nanocrystals. Chemistry of Materials, 2017, 29, 10510-10517.	3.2	13
31	Photon energy transfer by quantum dots in organic–inorganic hybrid solar cells through FRET. Journal of Materials Chemistry A, 2016, 4, 10444-10453.	5.2	24
32	Molybdenum and Tungsten Sulfide Ligands for Versatile Functionalization of All-Inorganic Nanocrystals. Journal of Physical Chemistry Letters, 2016, 7, 3627-3635.	2.1	18
33	Graphene Oxide Assisted Synthesis of Self-assembled Zinc Oxide for Lithium-Ion Battery Anode. Chemistry of Materials, 2016, 28, 8498-8503.	3.2	78
34	Highâ€Performance Sodiumâ€lon Hybrid Supercapacitor Based on Nb ₂ O ₅ @Carbon Core–Shell Nanoparticles and Reduced Graphene Oxide Nanocomposites. Advanced Functional Materials, 2016, 26, 3711-3719.	7.8	363
35	Size-Dependent Activity Trends Combined with in Situ X-ray Absorption Spectroscopy Reveal Insights into Cobalt Oxide/Carbon Nanotube-Catalyzed Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2016, 6, 4347-4355.	5.5	125
36	All-solid-state lithium-ion batteries with TiS ₂ nanosheets and sulphide solid electrolytes. Journal of Materials Chemistry A, 2016, 4, 10329-10335.	5.2	88

#	Article	IF	CITATIONS
37	Surface engineered gold nanoparticles through highly stable metal–surfactant complexes. Journal of Colloid and Interface Science, 2016, 464, 110-116.	5.0	5
38	Influence of four additional activators on hydrated-lime [Ca(OH) 2] activated ground granulated blast-furnace slag. Cement and Concrete Composites, 2016, 65, 1-10.	4.6	82
39	Thermally Cross-Linkable Diamino-Polyethylene Glycol Additive with Polymeric Binder for Stable Cyclability of Silicon Nanoparticle Based Negative Electrodes in Lithium Ion Batteries. Science of Advanced Materials, 2016, 8, 252-256.	0.1	6
40	Highâ€Performance Flexible Organic Nanoâ€Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles. Small, 2015, 11, 4976-4984.	5.2	33
41	Synergistic photocurrent addition in hybrid quantum dot: Bulk heterojunction solar cells. Nano Energy, 2015, 13, 491-499.	8.2	18
42	Influence of the structural modification of polycarboxylate copolymer with a low dispersing ability on the set-retarding of Portland cement. KSCE Journal of Civil Engineering, 2015, 19, 1787-1794.	0.9	8
43	Photodynamic Therapy: Highly Biocompatible Carbon Nanodots for Simultaneous Bioimaging and Targeted Photodynamic Therapy In Vitro and In Vivo (Adv. Funct. Mater. 37/2014). Advanced Functional Materials, 2014, 24, 5774-5774.	7.8	3
44	Inverted Colloidal Quantum Dot Solar Cells. Advanced Materials, 2014, 26, 3321-3327.	11.1	59
45	Synthesis, Characterization, and Application of Ultrasmall Nanoparticles. Chemistry of Materials, 2014, 26, 59-71.	3.2	347
46	Highly Biocompatible Carbon Nanodots for Simultaneous Bioimaging and Targeted Photodynamic Therapy In Vitro and In Vivo. Advanced Functional Materials, 2014, 24, 5781-5789.	7.8	191
47	Controlled specific placement of nanoparticles into microdomains of block copolymer thin films. Thin Solid Films, 2014, 562, 338-342.	0.8	2
48	Solution-processed CdS transistors with high electron mobility. RSC Advances, 2014, 4, 3153-3157.	1.7	19
49	A new polymeric binder for silicon-carbon nanotube composites in lithium ion battery. Macromolecular Research, 2013, 21, 826-831.	1.0	24
50	Effects of Ionic Liquid Molecules in Hybrid PbS Quantum Dot–Organic Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 1757-1760.	4.0	39
51	Incorporation of Thrombin Cleavage Peptide into a Protein Cage for Constructing a Protease-Responsive Multifunctional Delivery Nanoplatform. Biomacromolecules, 2012, 13, 4057-4064.	2.6	33
52	Graphene Multilayer Supported Gold Nanoparticles for Efficient Electrocatalysts Toward Methanol Oxidation. Advanced Energy Materials, 2012, 2, 1510-1518.	10.2	54
53	Synthesis of Uniformly Sized Manganese Oxide Nanocrystals with Various Sizes and Shapes and Characterization of Their <i>T</i> ₁ Magnetic Resonance Relaxivity. European Journal of Inorganic Chemistry, 2012, 2012, 2148-2155.	1.0	71
54	Ordered Mesoporous Carbon Supported Colloidal Pd Nanoparticle Based Model Catalysts for Suzuki Coupling Reactions: Impact of Organic Capping Agents. ChemCatChem, 2012, 4, 1587-1594.	1.8	56

#	Article	IF	CITATIONS
55	Exchange bias behavior of monodisperse Fe3O4/γ-Fe2O3 core/shell nanoparticles. Current Applied Physics, 2012, 12, 808-811.	1.1	29
56	Fabrication of Carbon Microcapsules Containing Silicon Nanoparticles-Carbon Nanotubes Nanocomposite for Anode in Lithium Ion Battery. Bulletin of the Korean Chemical Society, 2012, 33, 3025-3032.	1.0	7
57	Facile Synthetic Route for Surface-Functionalized Magnetic Nanoparticles: Cell Labeling and Magnetic Resonance Imaging Studies. ACS Nano, 2011, 5, 4329-4336.	7.3	71
58	Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand. Journal of the American Chemical Society, 2010, 132, 472-483.	6.6	271
59	Supercritical Continuousâ€Microflow Synthesis of Narrow Size Distribution Quantum Dots. Advanced Materials, 2008, 20, 4830-4834.	11.1	145
60	Synthesis of uniform-sized bimetallic iron–nickel phosphide nanorods. Journal of Solid State Chemistry, 2008, 181, 1609-1613.	1.4	44
61	Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by "Heating-Up―Process. Journal of the American Chemical Society, 2007, 129, 12571-12584.	6.6	407
62	Synthesis of Hollow Iron Nanoframes. Journal of the American Chemical Society, 2007, 129, 5812-5813.	6.6	182
63	Synthesis of Monodisperse Spherical Nanocrystals. Angewandte Chemie - International Edition, 2007, 46, 4630-4660.	7.2	1,751
64	Inter-particle and interfacial interaction of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 310, e806-e808.	1.0	15
65	Simultaneous Phase- and Size-Controlled Synthesis of TiO2Nanorods via Non-Hydrolytic Solâ^'Gel Reaction of Syringe Pump Delivered Precursors. Journal of Physical Chemistry B, 2006, 110, 24318-24323.	1.2	111
66	Synthesis, Characterization, and Self-Assembly of Pencil-Shaped CoO Nanorods. Journal of the American Chemical Society, 2006, 128, 9753-9760.	6.6	201
67	Effect of the Casting Solvent on the Morphology of Poly(styrene-b-isoprene) Diblock Copolymer/Magnetic Nanoparticle Mixtures. Langmuir, 2006, 22, 1375-1378.	1.6	40
68	Effect of interacting nanoparticles on the ordered morphology of block copolymer/nanoparticle mixtures. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3571-3579.	2.4	25
69	Ni/NiO Core/Shell Nanoparticles for Selective Binding and Magnetic Separation of Histidine-Tagged Proteins. Journal of the American Chemical Society, 2006, 128, 10658-10659.	6.6	425
70	Synthesis and catalytic applications of uniform-sized nanocrystals. Studies in Surface Science and Catalysis, 2006, 159, 47-54.	1.5	4
71	One-Nanometer-Scale Size-Controlled Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles. Angewandte Chemie - International Edition, 2005, 44, 2872-2877.	7.2	571
72	Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self-Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction. Advanced Materials, 2005, 17, 429-434.	11.1	550

#	Article	IF	CITATIONS
73	A Magnetically Separable, Highly Stable Enzyme System Based on Nanocomposites of Enzymes and Magnetic Nanoparticles Shipped in Hierarchically Ordered, Mesocellular, Mesoporous Silica. Small, 2005, 1, 1203-1207.	5.2	106
74	Large-Scale Synthesis of Hexagonal Pyramid-Shaped ZnO Nanocrystals from Thermolysis of Znâ^'Oleate Complex. Journal of Physical Chemistry B, 2005, 109, 14792-14794.	1.2	128
75	Generalized Synthesis of Metal Phosphide Nanorods via Thermal Decomposition of Continuously Delivered Metalâ^'Phosphine Complexes Using a Syringe Pump. Journal of the American Chemical Society, 2005, 127, 8433-8440.	6.6	282
76	Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 2004, 3, 891-895.	13.3	3,713
77	Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chloridesElectronic supplementary information (ESI) available: detailed experimental procedure for the catalytic reactions. See http://www.rsc.org/suppdata/cc/b3/b316147a/. Chemical Communications. 2004 778.	2.2	213
78	Diameter-Controlled Synthesis of Discrete and Uniform-Sized Single-Walled Carbon Nanotubes Using Monodisperse Iron Oxide Nanoparticles Embedded in Zirconia Nanoparticle Arrays as Catalysts. Journal of Physical Chemistry B, 2004, 108, 8091-8095.	1.2	50
79	Novel Synthesis of Magnetic Fe2P Nanorods from Thermal Decomposition of Continuously Delivered Precursors using a Syringe Pump. Angewandte Chemie - International Edition, 2004, 43, 2282-2285.	7.2	124
80	Single and Multiple-Step Dip-Coating of Colloidal Maghemite (?-Fe2O3) Nanoparticles onto Si, Si3N4, and SiO2 Substrates. Advanced Functional Materials, 2004, 14, 1062-1068.	7.8	37
81	Novel Synthesis of Magnetic Fe2P Nanorods from Thermal Decomposition of Continuously Delivered Precursors Using a Syringe Pump ChemInform, 2004, 35, no.	0.1	0
82	Designed Synthesis of Atom-Economical Pd/Ni Bimetallic Nanoparticle-Based Catalysts for Sonogashira Coupling Reactions. Journal of the American Chemical Society, 2004, 126, 5026-5027.	6.6	465
83	Direct Synthesis of Highly Crystalline and Monodisperse Manganese Ferrite Nanocrystals. Journal of Physical Chemistry B, 2004, 108, 13932-13935.	1.2	113
84	Synthesis, Characterization, and Magnetic Properties of Uniform-sized MnO Nanospheres and Nanorods. Journal of Physical Chemistry B, 2004, 108, 13594-13598.	1.2	126
85	Synthesis of Monodisperse Palladium Nanoparticles. Nano Letters, 2003, 3, 1289-1291.	4.5	403
86	Synthesis of Highly Crystalline and Monodisperse Cobalt Ferrite Nanocrystals. Journal of Physical Chemistry B, 2002, 106, 6831-6833.	1.2	297
87	Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. Journal of the American Chemical Society, 2001, 123, 12798-12801.	6.6	1,937
88	Synthesis of homogeneous and bright deep blue <scp> CsPbBr ₃ </scp> perovskite nanoplatelets with solidified surface for optoelectronic material. Bulletin of the Korean Chemical Society, 0, , .	1.0	2