James M Rini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2850913/publications.pdf

Version: 2024-02-01

172457 206112 5,820 48 29 48 citations h-index g-index papers 55 55 55 10119 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SPEEDS: A portable serological testing platform for rapid electrochemical detection of SARS-CoV-2 antibodies. Biosensors and Bioelectronics, 2022, 197, 113762.	10.1	33
2	Persistence of T Cell and Antibody Responses to SARS-CoV-2 Up to 9 Months after Symptom Onset. Journal of Immunology, 2022, 208, 429-443.	0.8	12
3	Convergent CDR3 homology amongst Spike-specific antibody responses in convalescent COVID-19 subjects receiving the BNT162b2 vaccine. Clinical Immunology, 2022, 237, 108963.	3.2	4
4	Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection. Mucosal Immunology, 2022, 15, 799-808.	6.0	152
5	Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach. Biosensors and Bioelectronics, 2021, 177, 112672.	10.1	100
6	Systematic Examination of Antigen-Specific Recall T Cell Responses to SARS-CoV-2 versus Influenza Virus Reveals a Distinct Inflammatory Profile. Journal of Immunology, 2021, 206, 37-50.	0.8	28
7	Detection of SARS-CoV-2 Viral Particles Using Direct, Reagent-Free Electrochemical Sensing. Journal of the American Chemical Society, 2021, 143, 1722-1727.	13.7	156
8	A homogeneous split-luciferase assay for rapid and sensitive detection of anti-SARS CoV-2 antibodies. Nature Communications, 2021, 12, 1806.	12.8	36
9	Detection and Neutralization of SARS-CoV-2 Using Non-conventional Variable Lymphocyte Receptor Antibodies of the Evolutionarily Distant Sea Lamprey. Frontiers in Immunology, 2021, 12, 659071.	4.8	2
10	Tetravalent SARS-CoV-2 Neutralizing Antibodies Show Enhanced Potency and Resistance to Escape Mutations. Journal of Molecular Biology, 2021, 433, 167177.	4.2	31
11	SARS-CoV-2–Reactive Mucosal B Cells in the Upper Respiratory Tract of Uninfected Individuals. Journal of Immunology, 2021, 207, 2581-2588.	0.8	5
12	Intranasal HD-Ad vaccine protects the upper and lower respiratory tracts of hACE2 mice against SARS-CoV-2. Cell and Bioscience, 2021, 11, 202.	4.8	13
13	Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Science Immunology, 2020, 5, .	11.9	714
14	Trimeric HIV-1 gp140 fused with APRIL, BAFF, and CD40L on the mucosal gp140-specific antibody responses in mice. Vaccine, 2020, 38, 2149-2159.	3.8	3
15	Exploiting the diphtheria toxin internalization receptor enhances delivery of proteins to lysosomes for enzyme replacement therapy. Science Advances, 2020, 6, .	10.3	6
16	A simple protein-based surrogate neutralization assay for SARS-CoV-2. JCI Insight, 2020, 5, .	5.0	193
17	The human coronavirus HCoV-229E S-protein structure and receptor binding. ELife, 2019, 8, .	6.0	153
18	Axonal Transport Enables Neuron-to-Neuron Propagation of Human Coronavirus OC43. Journal of Virology, 2018, 92, .	3.4	355

#	Article	lF	CITATIONS
19	Recognition of EGF-like domains by the Notch-modifying O-fucosyltransferase POFUT1. Nature Chemical Biology, 2017, 13, 757-763.	8.0	62
20	Structural basis of Notch O-glucosylation and O–xylosylation by mammalian protein–O-glucosyltransferase 1 (POGLUT1). Nature Communications, 2017, 8, 185.	12.8	39
21	Receptor-binding loops in alphacoronavirus adaptation and evolution. Nature Communications, 2017, 8, 1735.	12.8	82
22	Rapid and Facile Recombinant Expression of Bovine Rhodopsin in HEK293S GnTlâ ⁻ Cells Using a PiggyBac Inducible System. Methods in Enzymology, 2015, 556, 307-330.	1.0	11
23	Local acting S tickyâ€trap inhibits vascular endothelial growth factor dependent pathological angiogenesis in the eye. EMBO Molecular Medicine, 2014, 6, 604-623.	6.9	16
24	Expansion of Dysfunctional Tim-3–Expressing Effector Memory CD8+ T Cells during Simian Immunodeficiency Virus Infection in Rhesus Macaques. Journal of Immunology, 2014, 193, 5576-5583.	0.8	23
25	Simple <i>piggyBac</i> transposon-based mammalian cell expression system for inducible protein production. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5004-5009.	7.1	128
26	The ZIP5 Ectodomain Co-Localizes with PrP and May Acquire a PrP-Like Fold That Assembles into a Dimer. PLoS ONE, 2013, 8, e72446.	2.5	23
27	The X-ray Crystal Structure of Human Aminopeptidase N Reveals a Novel Dimer and the Basis for Peptide Processing. Journal of Biological Chemistry, 2012, 287, 36804-36813.	3.4	119
28	Structural and Mechanistic Characterization of Leukocyte-Type Core 2 \hat{l}^2 1,6-N-Acetylglucosaminyltransferase: A Metal-Ion-Independent GT-A Glycosyltransferase. Journal of Molecular Biology, 2011, 414, 798-811.	4.2	17
29	Mutational Tuning of Galectin-3 Specificity and Biological Function. Journal of Biological Chemistry, 2010, 285, 35079-35091.	3.4	98
30	Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. MAbs, 2010, 2, 53-66.	5.2	114
31	N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic. Journal of Cell Biology, 2009, 184, 847-862.	5.2	118
32	Structural Insights into Immune Recognition of the Severe Acute Respiratory Syndrome Coronavirus S Protein Receptor Binding Domain. Journal of Molecular Biology, 2009, 388, 815-823.	4.2	56
33	Re-examining the proposed lectin properties of IL-2. Molecular Immunology, 2008, 45, 1241-1247.	2.2	4
34	Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. Journal of Experimental Medicine, 2008, 205, 2763-2779.	8 . 5	681
35	X-ray Crystal Structures of Rabbit N-acetylglucosaminyltransferase I (GnT I) in Complex with Donor Substrate Analogues. Journal of Molecular Biology, 2006, 360, 67-79.	4.2	52
36	Xâ€ray Crystal Structure Determination of Mammalian Glycosyltransferases. Methods in Enzymology, 2006, 416, 30-48.	1.0	9

#	Article	IF	CITATIONS
37	Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. Journal of General Virology, 2006, 87, 641-650.	2.9	145
38	X-ray Crystal Structure of Leukocyte Type Core 2 \hat{l}^2 1,6-N-Acetylglucosaminyltransferase. Journal of Biological Chemistry, 2006, 281, 26693-26701.	3.4	61
39	Structural and Thermodynamic Studies on Cationâ^'Î Interactions in Lectinâ^'Ligand Complexes:Â High-Affinity Galectin-3 Inhibitors through Fine-Tuning of an Arginineâ^'Arene Interaction. Journal of the American Chemical Society, 2005, 127, 1737-1743.	13.7	231
40	Independent Lec1A CHO Glycosylation Mutants Arise from Point Mutations in N-Acetylglucosaminyltransferase I That Reduce Affinity for Both Substrates. Molecular Consequences Based on the Crystal Structure of GlcNAc-TI,. Biochemistry, 2001, 40, 8765-8772.	2.5	22
41	X-ray Crystal Structure of C3d: A C3 Fragment and Ligand for Complement Receptor 2 . Science, 1998, 280, 1277-1281.	12.6	209
42	X-ray Crystal Structure of the Human Galectin-3 Carbohydrate Recognition Domain at 2.1-Ã Resolution. Journal of Biological Chemistry, 1998, 273, 13047-13052.	3.4	372
43	Galectin Structure Trends in Glycoscience and Glycotechnology, 1997, 9, 145-154.	0.1	27
44	Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature, 1996, 380, 360-364.	27.8	660
45	Major antigen-induced domain rearrangements in an antibody. Structure, 1993, 1, 83-93.	3.3	216
46	Crystallization and Preliminary X-ray Diffraction Analysis of the Human Dimeric S-Lac Lectin (L-14-II). Journal of Molecular Biology, 1993, 233, 553-555.	4.2	10
47	Detailed Analysis of the Free and Bound Conformations of an Antibody. Journal of Molecular Biology, 1993, 234, 1098-1118.	4.2	107
48	[7] X-ray crystallographic analysis of free and antigen-complexed Fab fragments to investigate structural basis of immune recognition. Methods in Enzymology, 1991, 203, 153-176.	1.0	41