List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2849871/publications.pdf Version: 2024-02-01

ΙΟΗΝ Ε ΔΙΤΕΝ

#	Article	IF	CITATIONS
1	Catalysts, autocatalysis and the origin of metabolism. Interface Focus, 2019, 9, 20190072.	3.0	30
2	Nitrogenase Inhibition Limited Oxygenation of Earth's Proterozoic Atmosphere. Trends in Plant Science, 2019, 24, 1022-1031.	8.8	36
3	Molecular Recognition: How Photosynthesis Anchors the Mobile Antenna. Trends in Plant Science, 2019, 24, 388-392.	8.8	3
4	Oligomeric states in sodium ion-dependent regulation of cyanobacterial histidine kinase-2. Protoplasma, 2018, 255, 937-952.	2.1	5
5	Translating photosynthesis. Nature Plants, 2018, 4, 199-200.	9.3	4
6	An Algal Greening of Land. Cell, 2018, 174, 256-258.	28.9	15
7	Why we need to know the structure of phosphorylated chloroplast lightâ€harvesting complex <scp>II</scp> . Physiologia Plantarum, 2017, 161, 28-44.	5.2	19
8	Redox Tuning in Photosystem II. Trends in Plant Science, 2017, 22, 97-99.	8.8	12
9	The CoRR hypothesis for genes in organelles. Journal of Theoretical Biology, 2017, 434, 50-57.	1.7	37
10	A Proposal for Formation of Archaean Stromatolites before the Advent of Oxygenic Photosynthesis. Frontiers in Microbiology, 2016, 7, 1784.	3.5	16
11	A Two-Component Regulatory System in Transcriptional Control of Photosystem Stoichiometry: Redox-Dependent and Sodium Ion-Dependent Phosphoryl Transfer from Cyanobacterial Histidine Kinase Hik2 to Response Regulators Rre1 and RppA. Frontiers in Plant Science, 2016, 7, 137.	3.6	37
12	Lokiarchaeon is hydrogen dependent. Nature Microbiology, 2016, 1, 16034.	13.3	107
13	Probing the nucleotide-binding activity of a redox sensor: two-component regulatory control in chloroplasts. Photosynthesis Research, 2016, 130, 93-101.	2.9	7
14	Why Have Organelles Retained Genomes?. Cell Systems, 2016, 2, 70-72.	6.2	21
15	Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10231-10238.	7.1	244
16	Origin of Oxygenic Photosynthesis from Anoxygenic Type I and Type II Reaction Centers. , 2014, , 433-450.		0
17	Evolutionary rewiring: a modified prokaryotic gene-regulatory pathway in chloroplasts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120260.	4.0	31
18	Mitochondrial genome function and maternal inheritance. Biochemical Society Transactions, 2013, 41, 1298-1304.	3.4	25

#	Article	IF	CITATIONS
19	Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids. Genome Biology and Evolution, 2013, 5, 31-44.	2.5	234
20	Energy, ageing, fidelity and sex: oocyte mitochondrial DNA as a protected genetic template. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120263.	4.0	46
21	Energy, genes and evolution: introduction to an evolutionary synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120253.	4.0	32
22	Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes. Genome Biology and Evolution, 2013, 5, 2318-2329.	2.5	78
23	Chlorophyll Biosynthesis Gene Evolution Indicates Photosystem Gene Duplication, Not Photosystem Merger, at the Origin of Oxygenic Photosynthesis. Genome Biology and Evolution, 2013, 5, 200-216.	2.5	79
24	Early bioenergetic evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130088.	4.0	199
25	Female and Male Gamete Mitochondria Are Distinct and Complementary in Transcription, Structure, and Genome Function. Genome Biology and Evolution, 2013, 5, 1969-1977.	2.5	37
26	Chloroplast-mitochondria cross-talk in diatoms. Journal of Experimental Botany, 2012, 63, 1543-1557.	4.8	108
27	The neglected genome. EMBO Reports, 2012, 13, 473-474.	4.5	41
28	Queen Mary: nobody expects the Spanish Inquisition. Lancet, The, 2012, 379, 1785.	13.7	5
29	Mitochondria, Hydrogenosomes and Mitosomes in Relation to the CoRR Hypothesis for Genome Function and Evolution. , 2012, , 105-119.		8
30	Oxidation–reduction signalling components in regulatory pathways of state transitions and photosystem stoichiometry adjustment in chloroplasts. Plant, Cell and Environment, 2012, 35, 347-359.	5.7	70
31	A structural phylogenetic map for chloroplast photosynthesis. Trends in Plant Science, 2011, 16, 645-655.	8.8	218
32	Planctomycetes and eukaryotes: A case of analogy not homology. BioEssays, 2011, 33, 810-817.	2.5	79
33	Discrete Redox Signaling Pathways Regulate Photosynthetic Light-Harvesting and Chloroplast Gene Transcription. PLoS ONE, 2011, 6, e26372.	2.5	32
34	How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays, 2010, 32, 271-280.	2.5	292
35	Transcriptional Control of Photosynthesis Genes: The Evolutionarily Conserved Regulatory Mechanism in Plastid Genome Function. Genome Biology and Evolution, 2010, 2, 888-896.	2.5	57
36	Opinion: Research and how to promote it in a university. Future Medicinal Chemistry, 2010, 2, 15-20.	2.3	6

#	Article	IF	CITATIONS
37	Tethering of ferredoxin:NADP ⁺ oxidoreductase to thylakoid membranes is mediated by novel chloroplast protein TROL. Plant Journal, 2009, 60, 783-794.	5.7	89
38	Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2133-2145.	2.6	43
39	Transients in chloroplast gene transcription. Biochemical and Biophysical Research Communications, 2008, 368, 871-874.	2.1	19
40	Protein Diffusion and Macromolecular Crowding in Thylakoid Membranes Â. Plant Physiology, 2008, 146, 1571-1578.	4.8	122
41	Genes of Cyanobacterial Origin in Plant Nuclear Genomes Point to a Heterocyst-Forming Plastid Ancestor. Molecular Biology and Evolution, 2008, 25, 748-761.	8.9	197
42	The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10061-10066.	7.1	146
43	Redox Effects on Chloroplast Protein Synthesis and Phosphorylation. , 2008, , 903-907.		2
44	Redox Switches and Evolutionary Transitions. , 2008, , 1155-1160.		4
45	A Bacterial-Type Sensor Kinase Couples Electron Transport to Gene Expression in Chloroplasts. , 2008, , 1181-1186.		4
46	Inorganic Complexes Enabled the Onset of Life and Oxygenic Photosynthesis. , 2008, , 1187-1192.		9
47	Out of thin air. Nature, 2007, 445, 610-612.	27.8	144
48	Origin, Function, and Transmission of Mitochondria. , 2007, , 39-56.		9
49	Photosynthesis: The Processing of Redox Signals in Chloroplasts. Current Biology, 2005, 15, R929-R932.	3.9	15
50	Energy transduction anchors genes in organelles. BioEssays, 2005, 27, 426-435.	2.5	42
51	A redox switch hypothesis for the origin of two light reactions in photosynthesis. FEBS Letters, 2005, 579, 963-968.	2.8	73
52	Plastoquinone redox control of chloroplast thylakoid protein phosphorylation and distribution of excitation energy between photosystems: discovery, background, implications. , 2005, , 177-186.		1
53	Cytochrome b6f: structure for signalling and vectorial metabolism. Trends in Plant Science, 2004, 9, 130-137.	8.8	91

54 Chloroplast Redox Poise and Signaling. , 2004, , 438-445.

#	Article	IF	CITATIONS
55	BOTANY: State Transitionsa Question of Balance. Science, 2003, 299, 1530-1532.	12.6	251
56	Why Chloroplasts and Mitochondria Contain Genomes. Comparative and Functional Genomics, 2003, 4, 31-36.	2.0	66
57	The function of genomes in bioenergetic organelles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 19-38.	4.0	233
58	Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends in Plant Science, 2003, 8, 15-19.	8.8	351
59	Genomics and chloroplast evolution: what did cyanobacteria do for plants?. Genome Biology, 2003, 4, 209.	9.6	190
60	Lessons from Redox Signaling in Plants. Antioxidants and Redox Signaling, 2003, 5, 3-5.	5.4	52
61	Superoxide as an Obligatory, Catalytic Intermediate in Photosynthetic Reduction of Oxygen by Adrenaline and Dopamine. Antioxidants and Redox Signaling, 2003, 5, 7-14.	5.4	28
62	Will the Real LHC II Kinase Please Step Forward?. Science Signaling, 2002, 2002, pe43-pe43.	3.6	10
63	Photosynthesis of ATP—Electrons, Proton Pumps, Rotors, and Poise. Cell, 2002, 110, 273-276.	28.9	235
64	Photosynthesis for ramblers and browsers. Trends in Plant Science, 2002, 7, 376-377.	8.8	0
65	Plastoquinone redox control of chloroplast thylakoid protein phosphorylation and distribution of excitation energy between photosystems: discovery, background, implications. Photosynthesis Research, 2002, 73, 139-148.	2.9	77
66	Molecular recognition in thylakoid structure and function. Trends in Plant Science, 2001, 6, 317-326.	8.8	399
67	Principles of redox control in photosynthesis gene expression. Physiologia Plantarum, 2001, 112, 1-9.	5.2	108
68	Hypothesis, induction and background knowledge. Data do not speak for themselves. Replies to Donald A. Gillies, Lawrence A. Kelly and Michael Scott. BioEssays, 2001, 23, 861-862.	2.5	14
69	Protein tyrosine phosphorylation in the transition to light state 2 of chloroplast thylakoids. , 2001, 68, 71-79.		22
70	Comment on the editorial â€~Back to Darwin?' in EMBO reports , November 2000. EMBO Reports, 2001, 2, 76-76.	4.5	0
71	In silico veritas. EMBO Reports, 2001, 2, 542-544.	4.5	25
72	Bioinformatics and discovery: induction beckons again. BioEssays, 2001, 23, 104-107.	2.5	25

#	Article	IF	CITATIONS
73	Bioinformatics and discovery: induction beckons again. BioEssays, 2000, 23, 104-107.	2.5	29
74	Photosynthetic Electron Flow Regulates Transcription of the psaB Gene in Pea (Pisum sativum L.) Chloroplasts Through the Redox State of the Plastoquinone Pool. Plant and Cell Physiology, 2000, 41, 1045-1054.	3.1	82
75	Protein phosphorylation/dephosphorylation in the inner membrane of potato tuber mitochondria. FEBS Letters, 2000, 475, 213-217.	2.8	42
76	Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1351-1359.	4.0	144
77	Phosphoproteins and Protein Kinase Activities Intrinsic to Inner Membranes of Potato Tuber Mitochondria. Plant and Cell Physiology, 1999, 40, 1271-1279.	3.1	12
78	A Mitochondrial Model for Premature Ageing of Somatically Cloned Mammals. IUBMB Life, 1999, 48, 369-372.	3.4	5
79	Direct Transcriptional Control of the Chloroplast Genes psbA and psaAB Adjusts Photosynthesis to Light Energy Distribution in Plants. IUBMB Life, 1999, 48, 271-276.	3.4	76
80	Photosynthetic control of chloroplast gene expression. Nature, 1999, 397, 625-628.	27.8	576
81	Direct Transcriptional Control of the Chloroplast Genes psbA and psaAB Adjusts Photosynthesis to Light Energy Distribution in Plants. IUBMB Life, 1999, 48, 271-276.	3.4	97
82	A Mitochondrial Model for Premature Ageing of Somatically Cloned Mammals. IUBMB Life, 1999, 48, 369-372.	3.4	7
83	Protein synthesis by isolated pea mitochondria is dependent on the activity of respiratory complex II. Current Genetics, 1998, 33, 320-329.	1.7	20
84	Truncated recombinant light harvesting complex II proteins are substrates for a protein kinase associated with photosystem II core complexes. FEBS Letters, 1998, 435, 101-104.	2.8	17
85	Two Subunits of the FoF1-ATPase Are Phosphorylated in the Inner Mitochondrial Membrane. Biochemical and Biophysical Research Communications, 1998, 243, 664-668.	2.1	36
86	Phosphorylation Controls the Three-dimensional Structure of Plant Light Harvesting Complex II. Journal of Biological Chemistry, 1997, 272, 18350-18357.	3.4	96
87	Complementary adaptations, photosynthesis and phytochrome. Trends in Plant Science, 1997, 2, 41-43.	8.8	9
88	Reply to commentary by Helmut Beinert and Patricia Kiley. FEBS Letters, 1996, 382, 220-221.	2.8	1
89	Free-radical-induced mutation vs redox regulation: Costs and benefits of genes in organelles. Journal of Molecular Evolution, 1996, 42, 482-492.	1.8	166
90	Separate Sexes and the Mitochondrial Theory of Ageing. Journal of Theoretical Biology, 1996, 180, 135-140.	1.7	125

#	Article	IF	CITATIONS
91	Complex formation in plant thylakoid membranes. Competition studies on membrane protein interactions using synthetic peptide fragments. Photosynthesis Research, 1995, 44, 277-285.	2.9	4
92	Effects of synthetic peptides on thylakoid phosphoprotein phosphatase reactions. Physiologia Plantarum, 1995, 93, 173-178.	5.2	7
93	Thylakoid protein phosphorylation, state 1-state 2 transitions, and photosystem stoichiometry adjustment: redox control at multiple levels of gene expression. Physiologia Plantarum, 1995, 93, 196-205.	5.2	133
94	Origins of Photosynthesis. Nature, 1995, 376, 26-26.	27.8	1
95	Histidine and tyrosine phosphorylation in pea mitochondria: evidence for protein phosphorylation in respiratory redox signalling. FEBS Letters, 1995, 372, 238-242.	2.8	32
96	Structure and Magnesium Binding of Peptide Fragments of LHCII in Its Phosphorylated and Unphosphorylated Forms Studied by Multinuclear NMR. , 1995, , 127-130.		3
97	Redox Dependent Protein Phosphorylation as a Fundamental Feature of Bioenergetic Membranes in Cyanobacterial Thylakoids, Purple Bacterial Chromatophores and Mitochondrial Inner Membranes. , 1995, , 2353-2356.		0
98	Acid-Labile, Histidine Phosphoproteins in Chloroplasts and Mitochondria: Possible Candidates for Redox Sensor Kinases. , 1995, , 2639-2642.		0
99	Substrate specificity and kinetics of thylakoid phosphoprotein phosphatase reactions. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1188, 151-157.	1.0	12
100	TIME-RESOLVED IMAGING SPECTROSCOPY OF PLANT ADAPTATIONS TO CHANGES IN THE LIGHT ENVIRONMENT AND APPLICABILITY TO SCREENING MUTANTS. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 249b-249.	1.0	0
101	Control of Gene Expression by Redox Potential and the Requirement for Chloroplast and Mitochondrial Genomes. Journal of Theoretical Biology, 1993, 165, 609-631.	1.7	263
102	Redox control of gene expression and the function of chloroplast genomes ? an hypothesis. Photosynthesis Research, 1993, 36, 95-102.	2.9	76
103	Redox control of transcription: sensors, response regulators, activators and repressers. FEBS Letters, 1993, 332, 203-207.	2.8	117
104	Chloroplast thylakoid protein phosphatase reactions are redox-independent and kinetically heterogeneous. FEBS Letters, 1993, 334, 101-105.	2.8	66
105	Redox titration of multiple protein phosphorylations in pea chloroplast thylakoids. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1183, 215-220.	1.0	36
106	Photoinhibition of photosynthesis in vivo: Involvement of multiple sites in a photodamage process under CO2- and O2-free conditions. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1142, 115-122.	1.0	21
107	Differential phosphorylation of individual LHC-II polypeptides during short-term and long-term acclimation to light regime in the green alga Dunaliella salina. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1141, 37-44.	1.0	15
108	How does protein phosphorylation regulate photosynthesis?. Trends in Biochemical Sciences, 1992, 17, 12-17.	7.5	129

#	Article	IF	CITATIONS
109	Protein phosphorylation in regulation of photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1098, 275-335.	1.0	824
110	Reply from Allen. Trends in Biochemical Sciences, 1992, 17, 346-347.	7.5	0
111	Restoration of irradiance-stressed Dunaliella salina (green alga) to physiological growth conditions: changes in antenna size and composition of Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1100, 83-91.	1.0	13
112	Protein phosphorylation and Mg2+ influence light harvesting and electron transport in chloroplast thylakoid membrane material containing only the chlorophyll-a/b-binding light-harvesting complex of photosystem II and photosystem I. FEBS Journal, 1992, 204, 1107-1114.	0.2	15
113	Light-dependent phosphorylation of Photosystem II polypeptides maintains electron transport at high light intensity: separation from effects of phosphorylation of LHC-II. Biochimica Et Biophysica Acta - Bioenergetics, 1991, 1058, 289-296.	1.0	34
114	Cyanobacterial thylakoid membrane proteins are reversibly phosphorylated under plastoquinoneâ€reducing conditions in vitro. FEBS Letters, 1991, 282, 295-299.	2.8	30
115	State 1-State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between Photosystems I and II. Photosynthesis Research, 1990, 23, 297-311.	2.9	164
116	Response of the Photosynthetic Apparatus in <i>Dunaliella salina</i> (Green Algae) to Irradiance Stress. Plant Physiology, 1990, 93, 1433-1440.	4.8	162
117	Modification of a gInB-like gene product by photosynthetic electron transport in the cyanobacteriumSynechococcus6301. FEBS Letters, 1990, 264, 25-28.	2.8	31
118	Picosecond time-resolved fluorescence emission spectra indicate decreased energy transfer from the phycobilisome to Photosystem II in light-state 2 in the cyanobacterium Synechococcus 6301. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1015, 231-242.	1.0	51
119	Phosphorylation of Membrane Proteins in Control of Excitation Energy Transfer. , 1990, , 291-298.		Ο
120	Characterisation and Purification of Polypeptides Undergoing Light-Dependent Phosphorylation in the Cyanobacterium Synechococcus 6301. , 1990, , 3127-3130.		0
121	How does Protein Phosphorylation Control Protein-Protein Interactions in the Photosynthetic Membrane?. , 1990, , 1875-1878.		2
122	P-700 Photooxidation in State 1 and in State 2 in Cyanobacteria Upon Flash Illumination with Phycobilin and Chlorophyll Absorbed Light. , 1990, , 1879-1882.		0
123	Acclimation of the Photosynthetic Apparatus to Photosystem I or Photosystem II Light: Evidence from Quantum Yield Measurements and Fluorescence Spectroscopy of Cyanobacterial Cells. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1989, 44, 109-118.	1.4	38
124	State transitions, photosystem stoichiometry adjustment and non-photochemical quenching in cyanobacterial cells acclimated to light absorbed by photosystem I or photosystem II. Photosynthesis Research, 1989, 22, 157-166.	2.9	29
125	Protein phosphorylation and control of excitation energy transfer in photosynthetic purple bacteria and cyanobacteria. Biochimie, 1989, 71, 1021-1028.	2.6	6
126	P-700 photooxidation in state 1 and state 2 in cyanobacteria upon flash illumination with phycobilin- and chlorophyll-absorbed light. FEBS Letters, 1989, 256, 106-110.	2.8	13

#	Article	IF	CITATIONS
127	In vivo phosphorylation of proteins in the cyanobacterium Synechococcus 6301 after chromatic acclimation to Photosystem I or Photosystem II light. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 976, 168-172.	1.0	30
128	The rate of P-700 photooxidation under continuous illumination is independent of State 1-State 2 transitions in the green alga Scenedesmus obliquus. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 933, 95-106.	1.0	24
129	Protein phosphorylation in chromatophores from Rhodospirillum rubrum. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 935, 72-78.	1.0	18
130	Effects of divalent cations on 77 K fluorescence emission and on membrane protein phosphorylation in isolated thylakoids of the cyanobacterium Synechococcus 6301. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 934, 87-95.	1.0	11
131	Fluorescence induction transients indicate dissociation of Photosystem II from the phycobilisome during the State-2 transition in the cyanobacterium Synechococcus 6301. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 934, 96-107.	1.0	52
132	Effect of Mg2+on excitation energy transfer between LHC II and LHC I in a chlorophyll-protein complex. FEBS Letters, 1987, 225, 59-66.	2.8	22
133	State 1/State 2 changes in higher plants and algae. Photosynthesis Research, 1987, 13, 19-45.	2.9	165
134	The 18.5 kDa Phosphoprotein of the Cyanobacterium Synechococcus 6301 : A Component of the Phycobilisome. , 1987, , 761-764.		14
135	Regulation of Photosynthetic Unit Function by Protein Phosphorylation. , 1987, , 757-760.		0
136	Amino acid composition of the 9 kDa phosphoprotein of pea thylakoids. Biochemical and Biophysical Research Communications, 1986, 138, 146-152.	2.1	11
137	Fluorescence induction transients indicate altered absorption cross-section during light-state transitions in the cyanobacterium Synechococcus 6301. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 851, 147-150.	1.0	20
138	Protein phosphorylation as a control for excitation energy transfer inRhodospirillum rubrum. FEBS Letters, 1986, 200, 144-148.	2.8	19
139	A general model for regulation of photosynthetic unit function by protein phosphorylation. FEBS Letters, 1986, 202, 175-181.	2.8	88
140	The state 2 transition in the cyanobacterium Synechococcus 6301 can be driven by respiratory electron flow into the plastoquinone pool. FEBS Letters, 1986, 205, 155-160.	2.8	110
141	More on thylakoid membrane stacking. Trends in Biochemical Sciences, 1986, 11, 320.	7.5	7
142	Membrane protein phosphorylation in the cyanobacterium <i>Synechococcus</i> 6301. Biochemical Society Transactions, 1986, 14, 66-67.	3.4	24
143	Membrane protein phosphorylation in the purple photosynthetic bacterium Rhodopseudomonas sphaeroides. Biochemical Society Transactions, 1986, 14, 67-68.	3.4	16
144	Correlation of membrane protein phosphorylation with excitation energy distribution in the cyanobacterium Synechococcus 6301. FEBS Letters, 1985, 193, 271-275.	2.8	119

#	Article	IF	CITATIONS
145	Protein phosphorylation and optimal production of ATP in photosynthesis. Biochemical Society Transactions, 1984, 12, 774-775.	3.4	10
146	Protein phosphorylation — Carburettor of photosynthesis?. Trends in Biochemical Sciences, 1983, 8, 369-373.	7.5	47
147	Photosynthetic protein phosphorylation in intact chloroplasts. FEBS Letters, 1981, 123, 67-70.	2.8	52
148	Regulation of phosphorylation of chloroplast membrane polypeptides by the redox state of plastoquinone. FEBS Letters, 1981, 125, 193-196.	2.8	176
149	Chloroplast protein phosphorylation and chlorophyll fluorescence quenching. Activation by tetramethyl-p-hydroquinone, an electron donor to plastoquinone. Biochimica Et Biophysica Acta - Bioenergetics, 1981, 638, 290-295.	1.0	59
150	THYLAKOID PROTEIN PHOSPHORYLATION: A REGULATORY ROLE IN PHOTOSYNTHESIS. Biochemical Society Transactions, 1981, 9, 81P-81P.	3.4	0
151	Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature, 1981, 291, 25-29.	27.8	608
152	Effects of Inhibitors of Catalase on Photosynthesis and on Catalase Activity in Unwashed Preparations of Intact Chloroplasts. Plant Physiology, 1978, 61, 957-960.	4.8	30