Francisco Sanchez-Bayo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2849578/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Letter to the editor. Chemosphere, 2022, 291, 133021.	8.2	0
2	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate, and transport. Environmental Science and Pollution Research, 2021, 28, 11716-11748.	5.3	67
3	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environmental Science and Pollution Research, 2021, 28, 11749-11797.	5.3	155
4	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3:Âalternatives to systemic insecticides. Environmental Science and Pollution Research, 2021, 28, 11798-11820.	5.3	40
5	Residues of neonicotinoids in soil, water and people's hair: A case study from three agricultural regions of the Philippines. Science of the Total Environment, 2021, 757, 143822.	8.0	60
6	Further evidence for a global decline of the entomofauna. Austral Entomology, 2021, 60, 9-26.	1.4	71
7	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Environmental Science and Pollution Research, 2021, 28, 11709-11715.	5.3	10
8	Stay true to integrated pest management. Science, 2021, 371, 133-133.	12.6	11
9	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	7.8	176
10	Resolving the twin human and environmental health hazards of a plant-based diet. Environment International, 2020, 144, 106081.	10.0	25
11	Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 2019, 232, 8-27.	4.1	2,001
12	Effects of a herbicide on paddy predatory insects depend on their microhabitat use and an insecticide application. Ecological Applications, 2019, 29, e01945.	3.8	12
13	Response to "Global insect decline: Comments on Sánchez-Bayo and Wyckhuys (2019)― Biological Conservation, 2019, 233, 334-335.	4.1	9
14	A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize. Environmental Pollution, 2019, 249, 949-958.	7.5	79
15	Host-Tree Selection by the Invasive Argentine Ant (Hymenoptera: Formicidae) in Relation to Honeydew-Producing Insects. Journal of Economic Entomology, 2018, 111, 319-326.	1.8	6
16	The role of pesticides in pollinator declines. Ecosistemas, 2018, 27, 34-41.	0.4	5
17	Lethal and sublethal effects, and incomplete clearance of ingested imidacloprid in honey bees (Apis) Tj ETQq1 1	0.784314 2.4	rgðt /Overlo -
18	Contamination of the Aquatic Environment with Neonicotinoids and its Implication for Ecosystems.	3.3	175

Frontiers in Environmental Science, 2016, 4, .

#	Article	IF	CITATIONS
19	Are bee diseases linked to pesticides? — A brief review. Environment International, 2016, 89-90, 7-11.	10.0	350
20	Dose-response analysis indicating time-dependent neurotoxicity caused by organic and inorganic mercury—Implications for toxic effects in the developing brain. Toxicology, 2016, 347-349, 1-5.	4.2	50
21	Neonicotinoids and the prevalence of parasites and disease in bees. Bee World, 2015, 92, 34-40.	0.8	8
22	Different acute toxicity of fipronil baits on invasive Linepithema humile supercolonies and some non-target ground arthropods. Ecotoxicology, 2015, 24, 1221-1228.	2.4	17
23	Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International, 2015, 74, 291-303.	10.0	913
24	Pesticide Residues and Bees â \in " A Risk Assessment. PLoS ONE, 2014, 9, e94482.	2.5	615
25	The trouble with neonicotinoids. Science, 2014, 346, 806-807.	12.6	169
26	Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Scientific Reports, 2014, 4, 5566.	3.3	146
27	Calibration and Field Application of Chemcatcher® Passive Samplers for Detecting Amitrole Residues in Agricultural Drain Waters. Bulletin of Environmental Contamination and Toxicology, 2013, 90, 635-639.	2.7	11
28	Australian Snowpack Disappearing Under the Influence of Global Warming and Solar Activity. Arctic, Antarctic, and Alpine Research, 2013, 45, 107-118.	1.1	30
29	The molecular basis of simple relationships between exposure concentration and toxic effects with time. Toxicology, 2013, 309, 39-51.	4.2	80
30	Comparison of acute toxicity of two neonicotinoid insecticides, imidacloprid and clothianidin, to five cladoceran species. Journal of Pesticide Sciences, 2013, 38, 44-47.	1.4	26
31	Should we forget NOECs?. Integrated Environmental Assessment and Management, 2012, 8, 564-565.	2.9	2
32	Evaluation of suitable endpoints for assessing the impacts of toxicants at the community level. Ecotoxicology, 2012, 21, 667-680.	2.4	20
33	Differences in ecological impacts of systemic insecticides with different physicochemical properties on biocenosis of experimental paddy fields. Ecotoxicology, 2012, 21, 191-201.	2.4	63
34	Differences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronil. Ecotoxicology, 2012, 21, 421-427.	2.4	74
35	Comparison of environmental risks of pesticides between tropical and nontropical regions. Integrated Environmental Assessment and Management, 2011, 7, 577-586.	2.9	60
36	An amperometric method for the detection of amitrole, glyphosate and its aminomethyl-phosphonic acid metabolite in environmental waters using passive samplers. Analytica Chimica Acta, 2010, 675, 125-131.	5.4	45

#	Article	IF	CITATIONS
37	From simple toxicological models to prediction of toxic effects in time. Ecotoxicology, 2009, 18, 343-354.	2.4	48
38	Simplified models to analyse time- and dose-dependent responses of populations to toxicants. Ecotoxicology, 2007, 16, 511-523.	2.4	14
39	Influence of light in acute toxicity bioassays of imidacloprid and zinc pyrithione to zooplankton crustaceans. Aquatic Toxicology, 2006, 78, 262-271.	4.0	83
40	ECOLOGICAL EFFECTS OF THE INSECTICIDE IMIDACLOPRID AND A POLLUTANT FROM ANTIDANDRUFF SHAMPOO IN EXPERIMENTAL RICE FIELDS. Environmental Toxicology and Chemistry, 2006, 25, 1677.	4.3	78
41	Unexpected effects of zinc pyrithione and imidacloprid on Japanese medaka fish (Oryzias latipes). Aquatic Toxicology, 2005, 74, 285-293.	4.0	74
42	More Realistic Concentrations of Agrochemicals for Environmental Risk Assessments. Journal of Pesticide Sciences, 2004, 29, 130-133.	1.4	1
43	Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture. Agriculture, Ecosystems and Environment, 2002, 91, 37-57.	5.3	177
44	An Approach for Ecological Risk Assessment of Pesticides in Agriculture. Journal of Pesticide Sciences, 2002, 27, 425-428.	1.4	2
45	Stability of Chlorpyrifos for Termiticidal Control in Six Australian Soils. Journal of Agricultural and Food Chemistry, 2001, 49, 2844-2847.	5.2	16
46	A new technique to measure bird's dietary exposure to pesticides. Analytica Chimica Acta, 1999, 399, 173-183.	5.4	20