Francisco Sanchez-Bayo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2849578/publications.pdf

Version: 2024-02-01

46 papers

6,125 citations

218677 26 h-index 233421 45 g-index

46 all docs

46 docs citations

times ranked

46

7054 citing authors

#	Article	IF	CITATIONS
1	Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 2019, 232, 8-27.	4.1	2,001
2	Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International, 2015, 74, 291-303.	10.0	913
3	Pesticide Residues and Bees – A Risk Assessment. PLoS ONE, 2014, 9, e94482.	2.5	615
4	Are bee diseases linked to pesticides? â€" A brief review. Environment International, 2016, 89-90, 7-11.	10.0	350
5	Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture. Agriculture, Ecosystems and Environment, 2002, 91, 37-57.	5.3	177
6	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	7.8	176
7	Contamination of the Aquatic Environment with Neonicotinoids and its Implication for Ecosystems. Frontiers in Environmental Science, 2016, 4, .	3.3	175
8	The trouble with neonicotinoids. Science, 2014, 346, 806-807.	12.6	169
9	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environmental Science and Pollution Research, 2021, 28, 11749-11797.	5.3	155
10	Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Scientific Reports, 2014, 4, 5566.	3.3	146
11	Influence of light in acute toxicity bioassays of imidacloprid and zinc pyrithione to zooplankton crustaceans. Aquatic Toxicology, 2006, 78, 262-271.	4.0	83
12	The molecular basis of simple relationships between exposure concentration and toxic effects with time. Toxicology, 2013, 309, 39-51.	4.2	80
13	A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize. Environmental Pollution, 2019, 249, 949-958.	7.5	79
14	ECOLOGICAL EFFECTS OF THE INSECTICIDE IMIDACLOPRID AND A POLLUTANT FROM ANTIDANDRUFF SHAMPOO IN EXPERIMENTAL RICE FIELDS. Environmental Toxicology and Chemistry, 2006, 25, 1677.	4.3	78
15	Unexpected effects of zinc pyrithione and imidacloprid on Japanese medaka fish (Oryzias latipes). Aquatic Toxicology, 2005, 74, 285-293.	4.0	74
16	Differences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronil. Ecotoxicology, 2012, 21, 421-427.	2.4	74
17	Further evidence for a global decline of the entomofauna. Austral Entomology, 2021, 60, 9-26.	1.4	71
18	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate, and transport. Environmental Science and Pollution Research, 2021, 28, 11716-11748.	5.3	67

#	Article	IF	CITATIONS
19	Differences in ecological impacts of systemic insecticides with different physicochemical properties on biocenosis of experimental paddy fields. Ecotoxicology, 2012, 21, 191-201.	2.4	63
20	Comparison of environmental risks of pesticides between tropical and nontropical regions. Integrated Environmental Assessment and Management, 2011, 7, 577-586.	2.9	60
21	Residues of neonicotinoids in soil, water and people's hair: A case study from three agricultural regions of the Philippines. Science of the Total Environment, 2021, 757, 143822.	8.0	60
22	Dose-response analysis indicating time-dependent neurotoxicity caused by organic and inorganic mercuryâ€"Implications for toxic effects in the developing brain. Toxicology, 2016, 347-349, 1-5.	4.2	50
23	From simple toxicological models to prediction of toxic effects in time. Ecotoxicology, 2009, 18, 343-354.	2.4	48
24	An amperometric method for the detection of amitrole, glyphosate and its aminomethyl-phosphonic acid metabolite in environmental waters using passive samplers. Analytica Chimica Acta, 2010, 675, 125-131.	5.4	45
25	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3:Âalternatives to systemic insecticides. Environmental Science and Pollution Research, 2021, 28, 11798-11820.	5.3	40
26	Lethal and sublethal effects, and incomplete clearance of ingested imidacloprid in honey bees (Apis) Tj ETQq0 0	0 rgBT /Ον	verlock 10 Tf !
27	Australian Snowpack Disappearing Under the Influence of Global Warming and Solar Activity. Arctic, Antarctic, and Alpine Research, 2013, 45, 107-118.	1.1	30
28	Comparison of acute toxicity of two neonicotinoid insecticides, imidacloprid and clothianidin, to five cladoceran species. Journal of Pesticide Sciences, 2013, 38, 44-47.	1.4	26
29	Resolving the twin human and environmental health hazards of a plant-based diet. Environment International, 2020, 144, 106081.	10.0	25
30	A new technique to measure bird's dietary exposure to pesticides. Analytica Chimica Acta, 1999, 399, 173-183.	5.4	20
31	Evaluation of suitable endpoints for assessing the impacts of toxicants at the community level. Ecotoxicology, 2012, 21, 667-680.	2.4	20
32	Different acute toxicity of fipronil baits on invasive Linepithema humile supercolonies and some non-target ground arthropods. Ecotoxicology, 2015, 24, 1221-1228.	2.4	17
33	Stability of Chlorpyrifos for Termiticidal Control in Six Australian Soils. Journal of Agricultural and Food Chemistry, 2001, 49, 2844-2847.	5.2	16
34	Simplified models to analyse time- and dose-dependent responses of populations to toxicants. Ecotoxicology, 2007, 16, 511-523.	2.4	14
35	Effects of a herbicide on paddy predatory insects depend on their microhabitat use and an insecticide application. Ecological Applications, 2019, 29, e01945.	3.8	12
36	Calibration and Field Application of Chemcatcher® Passive Samplers for Detecting Amitrole Residues in Agricultural Drain Waters. Bulletin of Environmental Contamination and Toxicology, 2013, 90, 635-639.	2.7	11

#	Article	IF	CITATIONS
37	Stay true to integrated pest management. Science, 2021, 371, 133-133.	12.6	11
38	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Environmental Science and Pollution Research, 2021, 28, 11709-11715.	5.3	10
39	Response to "Global insect decline: Comments on Sánchez-Bayo and Wyckhuys (2019)― Biological Conservation, 2019, 233, 334-335.	4.1	9
40	Neonicotinoids and the prevalence of parasites and disease in bees. Bee World, 2015, 92, 34-40.	0.8	8
41	Host-Tree Selection by the Invasive Argentine Ant (Hymenoptera: Formicidae) in Relation to Honeydew-Producing Insects. Journal of Economic Entomology, 2018, 111, 319-326.	1.8	6
42	The role of pesticides in pollinator declines. Ecosistemas, 2018, 27, 34-41.	0.4	5
43	Should we forget NOECs?. Integrated Environmental Assessment and Management, 2012, 8, 564-565.	2.9	2
44	An Approach for Ecological Risk Assessment of Pesticides in Agriculture. Journal of Pesticide Sciences, 2002, 27, 425-428.	1.4	2
45	More Realistic Concentrations of Agrochemicals for Environmental Risk Assessments. Journal of Pesticide Sciences, 2004, 29, 130-133.	1.4	1
46	Letter to the editor. Chemosphere, 2022, 291, 133021.	8.2	0