Saiful Islam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2849110/publications.pdf

Version: 2024-02-01

471509 794594 2,462 19 17 19 citations h-index g-index papers 19 19 19 1984 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. Chemistry of Materials, 2017, 29, 1684-1694.	6.7	479
2	Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. ACS Energy Letters, 2020, 5, 2376-2400.	17.4	303
3	Facile synthesis and the exploration of the zinc storage mechanism of \hat{l}^2 -MnO ₂ nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23299-23309.	10.3	297
4	Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochimica Acta, 2018, 276, 1-11.	5.2	220
5	The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. Energy Storage Materials, 2020, 28, 407-417.	18.0	175
6	Aqueous Magnesium Zinc Hybrid Battery: An Advanced High-Voltage and High-Energy MgMn ₂ O ₄ Cathode. ACS Energy Letters, 2018, 3, 1998-2004.	17.4	159
7	A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chemical Physics Letters, 2016, 650, 64-68.	2.6	142
8	Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties. Applied Surface Science, 2017, 404, 435-442.	6.1	123
9	K ⁺ intercalated V ₂ O ₅ nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20335-20347.	10.3	116
10	Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications. Journal of Energy Chemistry, 2017, 26, 815-819.	12.9	112
11	In Situ Oriented Mn Deficient ZnMn ₂ O ₄ @C Nanoarchitecture for Durable Rechargeable Aqueous Zincâ€lon Batteries. Advanced Science, 2021, 8, 2002636.	11.2	90
12	First principles calculations study of \hat{l}_{\pm} -MnO $<$ sub $>$ 2 $<$ /sub $>$ as a potential cathode for Al-ion battery application. Journal of Materials Chemistry A, 2019, 7, 26966-26974.	10.3	52
13	A new rechargeable battery based on a zinc anode and a NaV ₆ O ₁₅ nanorod cathode. Chemical Communications, 2019, 55, 3793-3796.	4.1	51
14	Pyrosynthesis of Na ₃ V ₂ (PO ₄) ₃ @C Cathodes for Safe and Lowâ€Cost Aqueous Hybrid Batteries. ChemSusChem, 2018, 11, 2239-2247.	6.8	47
15	An experimental and first-principles study of the effect of B/N doping in TiO2 thin films for visible light photo-catalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 254, 25-34.	3.9	27
16	Quasi-solid-state zinc-ion battery based on $\hat{l}\pm$ -MnO2 cathode with husk-like morphology. Electrochimica Acta, 2020, 345, 136189.	5.2	24
17	Triggering the theoretical capacity of Na1.1V3O7.9 nanorod cathode by polypyrrole coating for high-energy zinc-ion batteries. Chemical Engineering Journal, 2022, 446, 137069.	12.7	23
18	Carbon-coated rhombohedral Li 2 NaV 2 (PO 4) 3 nanoflake cathode for Li-ion battery with excellent cycleability and rate capability. Chemical Physics Letters, 2017, 681, 44-49.	2.6	14

#	Article	IF	CITATIONS
19	<i>In Situ</i> Generation of Silicon Oxycarbide Phases on Reduced Graphene Oxide for Li-lon Battery Anode. ChemistrySelect, 2016, 1, 6429-6433.	1.5	8