Heng Gui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2848026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biology and Biochemistry, 2021, 156, 108211.	8.8	249
2	Microplastics as an emerging threat to plant and soil health in agroecosystems. Science of the Total Environment, 2021, 787, 147444.	8.0	138
3	Prized edible Asian mushrooms: ecology, conservation and sustainability. Fungal Diversity, 2012, 56, 31-47.	12.3	80
4	Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development. Scientific Reports, 2017, 7, 42184.	3.3	54
5	Many unreported crop pests and pathogens are probably already present. Global Change Biology, 2019, 25, 2703-2713.	9.5	38
6	The Arbuscular Mycorrhizal Fungus Funneliformis mosseae Alters Bacterial Communities in Subtropical Forest Soils during Litter Decomposition. Frontiers in Microbiology, 2017, 8, 1120.	3.5	36
7	Active metabolic pathways of anaerobic methane oxidation in paddy soils. Soil Biology and Biochemistry, 2021, 156, 108215.	8.8	32
8	Arbuscular mycorrhizal fungi potentially regulate N2O emissions from agricultural soils via altered expression of denitrification genes. Science of the Total Environment, 2021, 774, 145133.	8.0	27
9	Preparation, cellular uptake and angiogenic suppression of shikonin-containing liposomes inÂvitro and inÂvivo. Bioscience Reports, 2013, 33, e00020.	2.4	23
10	Fungal Community Composition and Diversity Vary With Soil Horizons in a Subtropical Forest. Frontiers in Microbiology, 2021, 12, 650440.	3.5	19
11	Organic management practices shape the structure and associations of soil bacterial communities in tea plantations. Applied Soil Ecology, 2021, 163, 103975.	4.3	17
12	Enhanced soil quality after forest conversion to vegetable cropland and tea plantations has contrasting effects on soil microbial structure and functions. Catena, 2022, 211, 106029.	5.0	14
13	Large-Scale Characterization of the Soil Microbiome in Ancient Tea Plantations Using High-Throughput 16S rRNA and Internal Transcribed Spacer Amplicon Sequencing. Frontiers in Microbiology, 2021, 12, 745225.	3.5	12
14	Funneliformis mosseae alters soil fungal community dynamics and composition during litter decomposition. Fungal Ecology, 2020, 43, 100864.	1.6	11
15	Substrate Preference Determines Macrofungal Biogeography in the Greater Mekong Sub-Region. Forests, 2019, 10, 824.	2.1	10
16	Novel saprobic Hermatomyces species (Hermatomycetaceae, Pleosporales) from China (Yunnan) Tj ETQq0 0 0 rg	gBT_/Overlc	ock 10 Tf 50

17	Taxonomy and phylogeny of the novel rhytidhysteron-like collections in the Greater Mekong Subregion. MycoKeys, 2022, 86, 65-85.	1.9	8
18	Variations in Soil Nutrient Dynamics and Bacterial Communities After the Conversion of Forests to Long-Term Tea Monoculture Systems. Frontiers in Microbiology, 0, 13, .	3.5	7

Heng Gui

#	Article	IF	CITATIONS
19	Fungal Interactions Matter: Tricholoma matsutake Domination Affect Fungal Diversity and Function in Mountain Forest Soils. Biology, 2021, 10, 1051.	2.8	6
20	Effects of degraded grassland conversion to mango plantation on soil CO2 fluxes. Applied Soil Ecology, 2021, 167, 104045.	4.3	5
21	<p>Loculosulcatispora thailandica gen. et sp. nov. (Sulcatisporaceae), saprobic on woody litter in Thailand</p> . Phytotaxa, 2020, 475, 67-78.	0.3	5
22	<p>Introduction of Neolophiotrema xiaokongense gen. et sp. nov. to the poorly represented Anteagloniaceae (Pleosporales,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50</p>	6Ъ7҉3Td (D	othideomyce
23	Composition of woody plant communities drives macrofungal community composition in three climatic regions. Journal of Vegetation Science, 2021, 32, e13001.	2.2	4
24	Dothidea kunmingensis, a novel asexual species of Dothideaceae on Jasminum nudiflorum (winter) Tj ETQq0 0 0	rgBT/Ovei	rloçk 10 Tf 50
25	Taxonomic and phylogenetic insights into novel Ascomycota from contaminated soils in Yunnan, China. Phytotaxa, 2021, 513, 203-225.	0.3	Ο