Cormac T Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2848010/publications.pdf

Version: 2024-02-01

		15504	12272
148	18,901	65	133
papers	citations	h-index	g-index
148	148	148	23359
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The transcription factor HIF- $1\hat{l}\pm$ mediates plasticity of NKp46+ innate lymphoid cells in the gut. Journal of Experimental Medicine, 2022, 219, .	8.5	22
2	Hypoxia Hits Glucose Metabolism in the Guts. Cellular and Molecular Gastroenterology and Hepatology, 2022, , .	4.5	O
3	Carbon Dioxide Sensing by Immune Cells Occurs through Carbonic Anhydrase 2–Dependent Changes in Intracellular pH. Journal of Immunology, 2022, 208, 2363-2375.	0.8	6
4	The effect of HIF on metabolism and immunity. Nature Reviews Nephrology, 2022, 18, 573-587.	9.6	114
5	Regulation of glycolysis by the hypoxiaâ€inducible factor (HIF): implications for cellular physiology. Journal of Physiology, 2021, 599, 23-37.	2.9	371
6	Collagen release by human hepatic stellate cells requires vitamin C and is efficiently blocked by hydroxylase inhibition. FASEB Journal, 2021, 35, e21219.	0.5	12
7	Inhibition of HIF-prolyl hydroxylases improves healing of intestinal anastomoses. JCI Insight, 2021, 6, .	5.0	11
8	Non-dipping nocturnal blood pressure correlates with obstructive sleep apnoea severity in normotensive subjects and may reverse with therapy. ERJ Open Research, 2021, 7, 00338-2021.	2.6	9
9	Regulation of the Hypoxia-Inducible Factor (HIF) by Pro-Inflammatory Cytokines. Cells, 2021, 10, 2340.	4.1	54
10	Prolyl Hydroxylase Inhibition Mitigates Pouchitis. Inflammatory Bowel Diseases, 2020, 26, 192-205.	1.9	3
11	Mechanisms and Consequences of Oxygen and Carbon Dioxide Sensing in Mammals. Physiological Reviews, 2020, 100, 463-488.	28.8	75
12	The putative bacterial oxygen sensor Pseudomonas prolyl hydroxylase (PPHD) suppresses antibiotic resistance and pathogenicity in <i>Pseudomonas aeruginosa</i> . Journal of Biological Chemistry, 2020, 295, 1195-1201.	3.4	4
13	The Shc protein Rai enhances Tâ€cell survival under hypoxia. Journal of Cellular Physiology, 2020, 235, 8058-8070.	4.1	3
14	Mucosal inflammation downregulates PHD1 expression promoting a barrierâ€protective HIFâ€1α response in ulcerative colitis patients. FASEB Journal, 2020, 34, 3732-3742.	0.5	16
15	Hypoxia and Innate Immunity: Keeping Up with the HIFsters. Annual Review of Immunology, 2020, 38, 341-363.	21.8	105
16	The putative bacterial oxygen sensor Pseudomonas prolyl hydroxylase (PPHD) suppresses antibiotic resistance and pathogenicity in Pseudomonas aeruginosa. Journal of Biological Chemistry, 2020, 295, 1195-1201.	3.4	4
17	P017 Transcriptional reprogramming of the HIF pathway is associated with inflammation and mucosal hypoxia in ulcerative colitis patients. Journal of Crohn's and Colitis, 2019, 13, S094-S095.	1.3	0
18	Hydroxylase Inhibition Selectively Induces Cell Death in Monocytes. Journal of Immunology, 2019, 202, 1521-1530.	0.8	7

#	Article	IF	Citations
19	Hypoxia-inducible factor hydroxylase inhibition enhances the protective effects of cyclosporine in colitis. American Journal of Physiology - Renal Physiology, 2019, 317, G90-G97.	3.4	10
20	Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous?. Cells, 2019, 8, 384.	4.1	142
21	Elevated CO2 regulates the Wnt signaling pathway in mammals, Drosophila melanogaster and Caenorhabditis elegans. Scientific Reports, 2019, 9, 18251.	3.3	24
22	Pharmacologic inhibition of hypoxiaâ€inducible factor (HIF)â€hydroxylases ameliorates allergic contact dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 753-766.	5.7	16
23	The PHD1 oxygen sensor in health and disease. Journal of Physiology, 2018, 596, 3899-3913.	2.9	24
24	Genetic Knockdown and Pharmacologic Inhibition of Hypoxia-Inducible Factor (HIF) Hydroxylases. Methods in Molecular Biology, 2018, 1742, 1-14.	0.9	6
25	Acquisition of Temporal HIF Transcriptional Activity Using a Secreted Luciferase Assay. Methods in Molecular Biology, 2018, 1742, 37-44.	0.9	2
26	Hypoxia in the Gut. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 61-62.	4.5	12
27	Hypoxiaâ€sensitive pathways in intestinal inflammation. Journal of Physiology, 2018, 596, 2985-2989.	2.9	32
28	Increased Virulence of Bloodstream Over Peripheral Isolates of P. aeruginosa Identified Through Post-transcriptional Regulation of Virulence Factors. Frontiers in Cellular and Infection Microbiology, 2018, 8, 357.	3.9	16
29	PHD3 Regulates p53 Protein Stability by Hydroxylating Proline 359. Cell Reports, 2018, 24, 1316-1329.	6.4	51
30	Hypoxia research: Reaching new heights. , 2018, , 34-35.		0
31	The regulation of transcriptional repression in hypoxia. Experimental Cell Research, 2017, 356, 173-181.	2.6	39
32	Determinants of hypoxia-inducible factor activity in the intestinal mucosa. Journal of Applied Physiology, 2017, 123, 1328-1334.	2.5	13
33	Hypoxia Reduces the Pathogenicity of Pseudomonas aeruginosa by Decreasing the Expression of Multiple Virulence Factors. Journal of Infectious Diseases, 2017, 215, 1459-1467.	4.0	22
34	Hypoxia Inducible Factor (HIF) Hydroxylases as Regulators of Intestinal Epithelial Barrier Function. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 303-315.	4.5	67
35	Regulation of immunity and inflammation by hypoxia in immunological niches. Nature Reviews Immunology, 2017, 17, 774-785.	22.7	430
36	Prolyl hydroxylase 2 inactivation enhances glycogen storage and promotes excessive neutrophilic responses. Journal of Clinical Investigation, 2017, 127, 3407-3420.	8.2	71

#	Article	IF	Citations
37	Wnt6 regulates epithelial cell differentiation and is dysregulated in renal fibrosis. American Journal of Physiology - Renal Physiology, 2016, 311, F35-F45.	2.7	21
38	Hydroxylase inhibition regulates inflammation-induced intestinal fibrosis through the suppression of ERK-mediated TGF- \hat{l}^21 signaling. American Journal of Physiology - Renal Physiology, 2016, 311, G1076-G1090.	3.4	21
39	Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-κB-dependent manner. Biochemical and Biophysical Research Communications, 2016, 474, 579-586.	2.1	26
40	Anoxia and glucose supplementation preserve neutrophil viability and function. Blood, 2016, 128, 993-1002.	1.4	55
41	The hypoxia-inducible factor (HIF) couples immunity with metabolism. Seminars in Immunology, 2016, 28, 469-477.	5 . 6	45
42	<i>Trypanosoma brucei</i> metabolite indolepyruvate decreases HIF- $1\hat{l}$ ± and glycolysis in macrophages as a mechanism of innate immune evasion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7778-E7787.	7.1	50
43	REST is a hypoxia-responsive transcriptional repressor. Scientific Reports, 2016, 6, 31355.	3.3	60
44	Crosstalk between toll-like receptors and hypoxia-dependent pathways in health and disease. Journal of Investigative Medicine, 2016, 64, 369-375.	1.6	7
45	Hypercapnia Suppresses the HIF-dependent Adaptive Response to Hypoxia. Journal of Biological Chemistry, 2016, 291, 11800-11808.	3.4	47
46	The role of HIF in immunity and inflammation. Molecular Aspects of Medicine, 2016, 47-48, 24-34.	6.4	115
47	Understanding complexity in the HIF signaling pathway using systems biology and mathematical modeling. Journal of Molecular Medicine, 2016, 94, 377-390.	3.9	24
48	Substrate-Trapped Interactors of PHD3 and FIH Cluster in Distinct Signaling Pathways. Cell Reports, 2016, 14, 2745-2760.	6.4	79
49	Hypoxia-dependent regulation of inflammatory pathways in immune cells. Journal of Clinical Investigation, 2016, 126, 3716-3724.	8.2	151
50	FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1. PLoS Biology, 2016, 14, e1002347.	5.6	78
51	REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia. Scientific Reports, 2015, 5, 17851.	3.3	54
52	Paricalcitol protects against TGF- \hat{l}^21 -induced fibrotic responses in hypoxia and stabilises HIF- \hat{l}^{\pm} in renal epithelia. Experimental Cell Research, 2015, 330, 371-381.	2.6	16
53	The impact of hypoxia on bacterial infection. FEBS Journal, 2015, 282, 2260-2266.	4.7	116
54	Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host and Microbe, 2015, 17, 662-671.	11.0	1,162

#	Article	IF	CITATIONS
55	Targeted delivery of the hydroxylase inhibitor DMOG provides enhanced efficacy with reduced systemic exposure in a murine model of colitis. Journal of Controlled Release, 2015, 217, 221-227.	9.9	63
56	Microbeâ∈Host Crosstalk between Shortâ€Chain Fatty Acids and Intestinal Epithelial HIF Provides a New Mechanism to Augment Tissue Barrier Function. FASEB Journal, 2015, 29, 282.6.	0.5	0
57	Hypoxia-sensitive pathways in inflammation-driven fibrosis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1369-R1380.	1.8	40
58	Carbon dioxide-sensing in organisms and its implications for human disease. Cellular and Molecular Life Sciences, 2014, 71, 831-845.	5.4	107
59	Transmigrating Neutrophils Shape the Mucosal Microenvironment through Localized Oxygen Depletion to Influence Resolution of Inflammation. Immunity, 2014, 40, 66-77.	14.3	373
60	Editorial: A PHD in macrophage survival. Journal of Leukocyte Biology, 2014, 96, 359-361.	3.3	0
61	Basic fibroblast growth factor modifies the hypoxic response of human bone marrow stromal cells by ERK-mediated enhancement of HIF-1α activity. Stem Cell Research, 2014, 12, 646-658.	0.7	19
62	Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression. Biochemical and Biophysical Research Communications, 2014, 447, 660-665.	2.1	63
63	Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496, 238-242.	27.8	2,845
64	The impact of hypoxia on cell death pathways. Biochemical Society Transactions, 2013, 41, 657-663.	3.4	63
65	A dynamic model of the hypoxia-inducible factor 1-alpha (HIF- $1\hat{l}_{\pm}$) network. Journal of Cell Science, 2013, 126, 1454-63.	2.0	112
66	Targeting the HIF pathway in inflammation and immunity. Current Opinion in Pharmacology, 2013, 13, 646-653.	3.5	119
67	Hydroxylases as therapeutic targets in inflammatory bowel disease. Laboratory Investigation, 2013, 93, 378-383.	3.7	39
68	Hydroxylase-dependent regulation of the NF-κB pathway. Biological Chemistry, 2013, 394, 479-493.	2.5	37
69	Regulation of IL-1β–induced NF-κB by hydroxylases links key hypoxic and inflammatory signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18490-18495.	7.1	145
70	Hypoxia Modulates Infection of Epithelial Cells by Pseudomonas aeruginosa. PLoS ONE, 2013, 8, e56491.	2.5	69
71	The Repressor Elementâ€1 Silencing Transcription Factor (REST) regulates the Hypoxia Inducible Factor (HIF) network through a novel negative feedback loop. FASEB Journal, 2013, 27, 717.13.	0.5	0
72	Gremlin Plays a Key Role in the Pathogenesis of Pulmonary Hypertension. Circulation, 2012, 125, 920-930.	1.6	100

#	Article	IF	CITATIONS
73	Hypercapnia Induces Cleavage and Nuclear Localization of RelB Protein, Giving Insight into CO2 Sensing and Signaling. Journal of Biological Chemistry, 2012, 287, 14004-14011.	3.4	48
74	Hypoxia Increases Antibiotic Resistance in Pseudomonas aeruginosa through Altering the Composition of Multidrug Efflux Pumps. Antimicrobial Agents and Chemotherapy, 2012, 56, 2114-2118.	3.2	99
75	NFκB and HIF display synergistic behaviour during hypoxic inflammation. Cellular and Molecular Life Sciences, 2012, 69, 1319-1329.	5.4	72
76	Glucose reintroduction triggers the activation of Nrf2 during experimental ischemia reperfusion. Molecular and Cellular Biochemistry, 2012, 366, 231-238.	3.1	23
77	Regulation of gene expression by carbon dioxide. Journal of Physiology, 2011, 589, 797-803.	2.9	38
78	An Intact Canonical NF-κB Pathway Is Required for Inflammatory Gene Expression in Response to Hypoxia. Journal of Immunology, 2011, 186, 1091-1096.	0.8	134
79	The Hydroxylase Inhibitor Dimethyloxallyl Glycine Attenuates Endotoxic Shock Via Alternative Activation of Macrophages and IL-10 Production by B1 Cells. Shock, 2011, 36, 295-302.	2.1	90
80	Small Ubiquitin-related Modifier (SUMO)-1 Promotes Glycolysis in Hypoxia. Journal of Biological Chemistry, 2011, 286, 4718-4726.	3.4	53
81	MicroRNA-155 Promotes Resolution of Hypoxia-Inducible Factor 1α Activity during Prolonged Hypoxia. Molecular and Cellular Biology, 2011, 31, 4087-4096.	2.3	253
82	Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice. Journal of Clinical Investigation, 2011, 121, 1053-1063.	8.2	147
83	RNA Interference and the Regulation of Renal Gene Expression in Hypoxia. , 2011, , 479-496.		0
84	Ancient Atmospheres and the Evolution of Oxygen Sensing Via the Hypoxia-Inducible Factor in Metazoans. Physiology, 2010, 25, 272-279.	3.1	108
85	Hypoxia, innate immunity and infection in the lung. Respiratory Physiology and Neurobiology, 2010, 174, 235-243.	1.6	63
86	Extracellular calcium depletion transiently elevates oxygen consumption in neurosecretory PC12 cells through activation of mitochondrial Na+/Ca2+ exchange. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1627-1637.	1.0	29
87	Angiogenesis and blood vessel stability in inflammatory arthritis. Arthritis and Rheumatism, 2010, 62, 711-721.	6.7	132
88	Stabilization of Hypoxia-inducible Factor-1α Protein in Hypoxia Occurs Independently of Mitochondrial Reactive Oxygen Species Production. Journal of Biological Chemistry, 2010, 285, 31277-31284.	3.4	154
89	Synovial tissue hypoxia and inflammation in vivo. Annals of the Rheumatic Diseases, 2010, 69, 1389-1395.	0.9	198
90	NF- $\hat{\mathbb{P}}$ B Links CO2 Sensing to Innate Immunity and Inflammation in Mammalian Cells. Journal of Immunology, 2010, 185, 4439-4445.	0.8	89

#	Article	IF	CITATIONS
91	Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiological Genomics, 2010, 40, 83-93.	2.3	64
92	Loss of Prolyl Hydroxylase-1 Protects Against Colitis Through Reduced Epithelial Cell Apoptosis and Increased Barrier Function. Gastroenterology, 2010, 139, 2093-2101.	1.3	175
93	Hydroxylase inhibition reduces synaptic transmission and protects against a glutamate-induced ischemia in the CA1 region of the rat hippocampus. Neuroscience, 2010, 167, 1014-1024.	2.3	22
94	Hypoxia: an alarm signal during intestinal inflammation. Nature Reviews Gastroenterology and Hepatology, 2010, 7, 281-287.	17.8	376
95	Monitoring of cell oxygenation and responses to metabolic stimulation by intracellular oxygen sensing technique. Integrative Biology (United Kingdom), 2010, 2, 443-451.	1.3	56
96	Nitric Oxide, Cytochrome C Oxidase, and the Cellular Response to Hypoxia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 643-647.	2.4	183
97	A mitochondria-targeted <i>S</i> -nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10764-10769.	7.1	205
98	Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation. European Respiratory Journal, 2009, 33, 1195-1205.	6.7	289
99	PGC-1α is coupled to HIF-1α-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2188-2193.	7.1	172
100	Angiogenin protects motoneurons against hypoxic injury. Cell Death and Differentiation, 2009, 16, 1238-1247.	11.2	98
101	The Role of NFâ€PB in Hypoxiaâ€Induced Gene Expression. Annals of the New York Academy of Sciences, 2009, 1177, 178-184.	3 . 8	153
102	Systemic inflammation: a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome?. Postgraduate Medical Journal, 2009, 85, 693-698.	1.8	191
103	Hypoxia. Regulation of NFÎ $^\circ$ B signalling during inflammation: the role of hydroxylases. Arthritis Research and Therapy, 2009, 11, 215.	3.5	79
104	Hypoxia Activates NF-κB–Dependent Gene Expression Through the Canonical Signaling Pathway. Antioxidants and Redox Signaling, 2009, 11, 2057-2064.	5.4	103
105	Regulation of Oxygen Distribution in Tissues by Endothelial Nitric Oxide. Circulation Research, 2009, 104, 1178-1183.	4.5	62
106	Interdependent roles for hypoxia inducible factor and nuclear factorâ€₽B in hypoxic inflammation. Journal of Physiology, 2008, 586, 4055-4059.	2.9	294
107	The Hydroxylase Inhibitor Dimethyloxalylglycine Is Protective in a Murine Model of Colitis. Gastroenterology, 2008, 134, 156-165.e1.	1.3	366
108	Mitochondria and cellular oxygen sensing in the HIF pathway. Biochemical Journal, 2008, 409, 19-26.	3.7	273

#	Article	IF	CITATIONS
109	<i>Mitochondria, oxygen sensing</i> , <i>and the regulation of HIF-2α</i> . Focus on "Induction of HIF-2α is dependent on mitochondrial O ₂ consumption in an O ₂ -sensitive adrenomedullary chromaffin cell line― American Journal of Physiology - Cell Physiology, 2008, 294, C1300-C1302.	4.6	5
110	Hypoxia Selectively Activates the CREB Family of Transcription Factors in the <i>In Vivo</i> Lung. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 977-983.	5.6	64
111	SUMO, hypoxia and the regulation of metabolism. Biochemical Society Transactions, 2008, 36, 445-448.	3.4	19
112	Cardiovascular risk markers in obstructive sleep apnoea syndrome and correlation with obesity. Thorax, 2007, 62, 509-514.	5.6	118
113	Sensing intracellular oxygen using near-infrared phosphorescent probes and live-cell fluorescence imaging. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1613-R1620.	1.8	56
114	Lower Expression of Nrf2 MRNA in Older Donor Livers: A Possible Contributor to Increased Ischemia–Reperfusion Injury?. Transplantation, 2007, 84, 1272-1278.	1.0	18
115	The autonomic nervous system and inflammatory bowel disease. Autonomic Neuroscience: Basic and Clinical, 2007, 133, 104-114.	2.8	49
116	A critical role for p38 map kinase in NF-κB signaling during intermittent hypoxia/reoxygenation. Biochemical and Biophysical Research Communications, 2007, 355, 728-733.	2.1	106
117	Hypoxic Regulation of NFâ€̂PB Signaling. Methods in Enzymology, 2007, 435, 479-492.	1.0	25
118	Enhanced sensitivity of protein kinase B/Akt to insulin in hypoxia is independent of $HIF1\hat{l}\pm and$ promotes cell viability. European Journal of Cell Biology, 2007, 86, 393-403.	3.6	2
119	Oxygen, Hypoxia, and Stress. Annals of the New York Academy of Sciences, 2007, 1113, 87-94.	3 . 8	54
120	Hypoxia and gastrointestinal disease. Journal of Molecular Medicine, 2007, 85, 1295-1300.	3.9	275
121	Regulation of protein phosphatase $1\hat{1}^3$ activity in hypoxia through increased interaction with NIPP1: Implications for cellular metabolism. Journal of Cellular Physiology, 2006, 209, 211-218.	4.1	20
122	Predictors of Elevated Nuclear Factor-κB–dependent Genes in Obstructive Sleep Apnea Syndrome. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 824-830.	5.6	325
123	Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB Journal, 2006, , .	0.5	1
124	Hypoxia induces epithelial amphiregulin gene expression in a CREB-dependent manner. American Journal of Physiology - Cell Physiology, 2006, 290, C592-C600.	4.6	43
125	Prolyl hydroxylase-1 negatively regulates IÂB kinase-beta, giving insight into hypoxia-induced NFÂB activity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18154-18159.	7.1	687
126	Reoxygenationâ€specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemiaâ€reperfusion injury. FASEB Journal, 2006, 20, 2624-2626.	0.5	231

#	Article	IF	Citations
127	Ubiquitin Protein Modification and Signal Transduction: Implications for Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2005, 11, 1097-1107.	1.9	16
128	Hypoxia-responsive transcription factors. Pflugers Archiv European Journal of Physiology, 2005, 450, 363-371.	2.8	396
129	Selective Activation of Inflammatory Pathways by Intermittent Hypoxia in Obstructive Sleep Apnea Syndrome. Circulation, 2005, 112, 2660-2667.	1.6	793
130	Potentiation of Glucocorticoid Activity in Hypoxia through Induction of the Glucocorticoid Receptor. Journal of Immunology, 2005, 174, 2250-2257.	0.8	86
131	Identification of Cyclic AMP Response Element-Binding Protein-Dependent Transcriptional Responses in Hypoxia by Microarray Analysis. Methods in Enzymology, 2004, 381, 511-524.	1.0	3
132	c-Jun NH2-Terminal Kinase Activation Contributes to Hypoxia-Inducible Factor 1α–Dependent P-Glycoprotein Expression in Hypoxia. Cancer Research, 2004, 64, 9057-9061.	0.9	103
133	Regulation of intestinal epithelial gene expression in hypoxia. Kidney International, 2004, 66, 528-531.	5.2	24
134	Modification of the transcriptomic response to renal ischemia/reperfusion injury by lipoxin analog. Kidney International, 2003, 64, 480-492.	5.2	138
135	Redistribution of Intracellular Oxygen in Hypoxia by Nitric Oxide: Effect on HIF1α. Science, 2003, 302, 1975-1978.	12.6	671
136	Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 986-991.	7.1	164
137	The Role of HIF-1α in Transcriptional Regulation of the Proximal Tubular Epithelial Cell Response to Hypoxia. Journal of Biological Chemistry, 2003, 278, 40296-40304.	3.4	138
138	15-Epi-16-(Para-Fluorophenoxy)-Lipoxin A4-Methyl Ester, a Synthetic Analogue of 15-epi-Lipoxin A4, Is Protective in Experimental Ischemic Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2002, 13, 1657-1662.	6.1	147
139	Hypoxia-Inducible Factor 1–Dependent Induction of Intestinal Trefoil Factor Protects Barrier Function during Hypoxia. Journal of Experimental Medicine, 2001, 193, 1027-1034.	8.5	386
140	Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12091-12096.	7.1	122
141	Critical Role of cAMP Response Element Binding Protein Expression in Hypoxia-elicited Induction of Epithelial Tumor Necrosis Factor-α. Journal of Biological Chemistry, 1999, 274, 19447-19454.	3.4	83
142	Therapeutic targets for hypoxia-elicited pathways. Pharmaceutical Research, 1999, 16, 1498-1505.	3.5	41
143	Epithelial permeability induced by neutrophil transmigration is potentiated by hypoxia: Role of intracellular cAMP. Journal of Cellular Physiology, 1998, 176, 76-84.	4.1	54
144	Autocrine regulation of epithelial permeability by hypoxia: Role for polarized release of tumor necrosis factor î±. Gastroenterology, 1998, 114, 657-668.	1.3	182

#	Article	IF	CITATIONS
145	Neutrophil-derived 5′-Adenosine Monophosphate Promotes Endothelial Barrier Function via CD73-mediated Conversion to Adenosine and Endothelial A2B Receptor Activation. Journal of Experimental Medicine, 1998, 188, 1433-1443.	8.5	210
146	Hypoxia inhibits cyclic nucleotide-stimulated epithelial ion transport: role for nucleotide cyclases as oxygen sensors. Journal of Pharmacology and Experimental Therapeutics, 1998, 284, 568-75.	2.5	31
147	Cytokines and Epithelial Function. , 0, , 61-78.		2
148	$\label{eq:hilling} \begin{tabular}{l} HIF1\^1\pm-Dependent\ Induction\ of\ TFRC\ by\ a\ Combination\ of\ Intestinal\ Inflammation\ and\ Systemic\ Iron\ Deficiency\ in\ Inflammatory\ Bowel\ Disease.\ Frontiers\ in\ Physiology,\ 0,\ 13,\ . \end{tabular}$	2.8	8