
Stephane Rocchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2846572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	SRC-1 and TIF2 Control Energy Balance between White and Brown Adipose Tissues. Cell, 2002, 111, 931-941.	28.9	401
3	A Unique PPARÎ ³ Ligand with Potent Insulin-Sensitizing yet Weak Adipogenic Activity. Molecular Cell, 2001, 8, 737-747.	9.7	279
4	Melanocytes Sense Blue Light and Regulate Pigmentation through Opsin-3. Journal of Investigative Dermatology, 2018, 138, 171-178.	0.7	225
5	Senescent cells develop a PARP-1 and nuclear factor-κB-associated secretome (PNAS). Genes and Development, 2011, 25, 1245-1261.	5.9	223
6	Compounds Triggering ER Stress Exert Anti-Melanoma Effects and Overcome BRAF Inhibitor Resistance. Cancer Cell, 2016, 29, 805-819.	16.8	201
7	The Epithelial-Mesenchymal Transition (EMT) Regulatory Factor SLUG (SNAI2) Is a Downstream Target of SPARC and AKT in Promoting Melanoma Cell Invasion. PLoS ONE, 2012, 7, e40378.	2.5	176
8	Metformin Blocks Melanoma Invasion and Metastasis Development in AMPK/p53-Dependent Manner. Molecular Cancer Therapeutics, 2013, 12, 1605-1615.	4.1	176
9	Sustained recruitment of phospholipase C-γ to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene, 2000, 19, 1509-1518.	5.9	154
10	Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis. Nature Communications, 2015, 6, 6993.	12.8	151
11	Mitochondrial oxidative stress is the achille's heel of melanoma cells resistant to Braf-mutant inhibitor. Oncotarget, 2013, 4, 1986-1998.	1.8	145
12	Transcription Factors and Nuclear Receptors Interact with the SWI/SNF Complex through the BAF60c Subunit. Journal of Biological Chemistry, 2004, 279, 16677-16686.	3.4	117
13	Recurrent <scp>BRAF</scp> kinase fusions in melanocytic tumors offer an opportunity for targeted therapy. Pigment Cell and Melanoma Research, 2013, 26, 845-851.	3.3	114
14	Innate lymphocyte-induced CXCR3B-mediated melanocyte apoptosis is a potential initiator of T-cell autoreactivity in vitiligo. Nature Communications, 2019, 10, 2178.	12.8	94
15	FALDH Reverses the Deleterious Action of Oxidative Stress Induced by Lipid Peroxidation Product 4-Hydroxynonenal on Insulin Signaling in 3T3-L1 Adipocytes. Diabetes, 2008, 57, 1216-1226.	0.6	92
16	Metastatic Melanoma: Insights Into the Evolution of the Treatments and Future Challenges. Medicinal Research Reviews, 2017, 37, 98-148.	10.5	92
17	The PRKAA1/AMPKα1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML. Autophagy, 2015, 11, 1114-1129.	9.1	86
18	Peroxisome proliferator-activated receptor-γ: a versatile metabolic regulator. Annals of Medicine, 1999, 31, 342-351.	3.8	82

STEPHANE ROCCHI

#	Article	IF	CITATIONS
19	Focal Adhesion Kinase pp125FAK Interacts With the Large Conductance Calcium-Activated hSlo Potassium Channel in Human Osteoblasts: Potential Role in Mechanotransduction. Journal of Bone and Mineral Research, 2003, 18, 1863-1871.	2.8	75
20	Fatty Aldehyde Dehydrogenase. Journal of Biological Chemistry, 2004, 279, 6261-6270.	3.4	73
21	Aurora B Is Regulated by the Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase (MAPK/ERK) Signaling Pathway and Is a Valuable Potential Target in Melanoma Cells. Journal of Biological Chemistry, 2012, 287, 29887-29898.	3.4	70
22	Spleen Tyrosine Kinase Functions as a Tumor Suppressor in Melanoma Cells by Inducing Senescence-like Growth Arrest. Cancer Research, 2009, 69, 2748-2756.	0.9	69
23	Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype. Genes and Development, 2018, 32, 448-461.	5.9	69
24	Genetic Heterogeneity of BRAF Fusion Kinases in Melanoma Affects Drug Responses. Cell Reports, 2019, 29, 573-588.e7.	6.4	62
25	Cancer cell metabolic reprogramming: a keystone for the response to immunotherapy. Cell Death and Disease, 2020, 11, 964.	6.3	61
26	New anti-cancer molecules targeting HSPA5/BIP to induce endoplasmic reticulum stress, autophagy and apoptosis. Autophagy, 2017, 13, 216-217.	9.1	57
27	Increased CD271 expression by the NF-kB pathway promotes melanoma cell survival and drives acquired resistance to BRAF inhibitor vemurafenib. Cell Discovery, 2015, 1, 15030.	6.7	56
28	Inhibition of Melanogenesis by the Antidiabetic Metformin. Journal of Investigative Dermatology, 2014, 134, 2589-2597.	0.7	53
29	In Vitro and In Vivo Anti-Melanoma Effects of Ciglitazone. Journal of Investigative Dermatology, 2009, 129, 1208-1218.	0.7	51
30	The energy disruptor metformin targets mitochondrial integrity via modification of calcium flux in cancer cells. Scientific Reports, 2017, 7, 5040.	3.3	47
31	Metformin: Focus on Melanoma. Frontiers in Endocrinology, 2018, 9, 472.	3.5	40
32	The p53/p21 ^{Cip1/ Waf1} pathway mediates the effects of SPARC on melanoma cell cycle progression. Pigment Cell and Melanoma Research, 2011, 24, 219-232.	3.3	36
33	The GRP78/BiP inhibitor HA15 synergizes with mitotane action against adrenocortical carcinoma cells through convergent activation of ER stress pathways. Molecular and Cellular Endocrinology, 2018, 474, 57-64.	3.2	33
34	E2F1 inhibition mediates cell death of metastatic melanoma. Cell Death and Disease, 2018, 9, 527.	6.3	32
35	The PPARÎ ³ agonist FMOC-l-leucine protects both mature and immature brain. Biomedicine and Pharmacotherapy, 2008, 62, 259-263.	5.6	27
36	ls it time to test biguanide metformin in the treatment of melanoma?. Pigment Cell and Melanoma Research, 2015, 28, 8-20.	3.3	27

STEPHANE ROCCHI

#	Article	IF	CITATIONS
37	Deciphering the Role of Oncogenic MITFE318K in Senescence Delay and Melanoma Progression. Journal of the National Cancer Institute, 2017, 109, .	6.3	27
38	PGC1α Inhibits Polyamine Synthesis to Suppress Prostate Cancer Aggressiveness. Cancer Research, 2019, 79, 3268-3280.	0.9	27
39	Analysis of Matched Skin and Gut Microbiome of Patients with Vitiligo Reveals Deep Skin Dysbiosis: Link with Mitochondrial and Immune Changes. Journal of Investigative Dermatology, 2021, 141, 2280-2290.	0.7	26
40	PPARs: Interference with Warburg' Effect and Clinical Anticancer Trials. PPAR Research, 2012, 2012, 1-23.	2.4	23
41	Metformin monotherapy in melanoma: a pilot, openâ€label, prospective, and multicentric study indicates no benefit. Pigment Cell and Melanoma Research, 2017, 30, 378-380.	3.3	23
42	Regulation of NADPH-dependent Nitric Oxide and reactive oxygen species signalling in endothelial and melanoma cells by a photoactive NADPH analogue. Oncotarget, 2014, 5, 10650-10664.	1.8	22
43	Discovery and Optimization of <i>N</i> -(4-(3-Aminophenyl)thiazol-2-yl)acetamide as a Novel Scaffold Active against Sensitive and Resistant Cancer Cells. Journal of Medicinal Chemistry, 2016, 59, 8276-8292.	6.4	20
44	Discovery of a new molecule inducing melanoma cell death: dual AMPK/MELK targeting for novel melanoma therapies. Cell Death and Disease, 2021, 12, 64.	6.3	16
45	Biguanides drugs: Past success stories and promising future for drug discovery. European Journal of Medicinal Chemistry, 2021, 224, 113726.	5.5	15
46	Mechanism of melanoma cells selective apoptosis induced by a photoactive NADPH analogue. Oncotarget, 2016, 7, 82804-82819.	1.8	14
47	Adrenocorticotrophic hormone stimulates phosphotyrosine phosphatase SHP2 in bovine adrenocortical cells: phosphorylation and activation by cAMP-dependent protein kinase. Biochemical Journal, 2000, 352, 483.	3.7	13
48	A short series of antidiabetic sulfonylureas exhibit multiple ligand PPARÎ ³ -binding patterns. Biomedicine and Pharmacotherapy, 2009, 63, 56-62.	5.6	12
49	Structure activity relationship and optimization of N -(3-(2-aminothiazol-4-yl)aryl)benzenesulfonamides as anti-cancer compounds against sensitive and resistant cells. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2192-2196.	2.2	11
50	Sulfonylguanidine Derivatives as Potential Antimelanoma Agents. ChemMedChem, 2020, 15, 1113-1117.	3.2	9
51	Dual Covalent Inhibition of PKM and IMPDH Targets Metabolism in Cutaneous Metastatic Melanoma. Cancer Research, 2021, 81, 3806-3821.	0.9	9
52	Targeting BIP to induce Endoplasmic Reticulum stress and cancer cell death. Oncoscience, 2016, 3, 306-307.	2.2	7
53	PGJ2 restores RA sensitivity in melanoma cells by decreasing PRAME and EZH2. Journal of Dermatological Science, 2014, 73, 258-261.	1.9	5
54	Increased Activation of Innate Immunity and Pro-Apoptotic CXCR3B in Normal-Appearing Skin on the Lesional Site of Patients with Segmental Vitiligo. Journal of Investigative Dermatology, 2022, 142, 480-483.e2.	0.7	4

STEPHANE ROCCHI

#	Article	IF	CITATIONS
55	Expression level of GRP78/BiP as a predictor of favorable or unfavorable outcomes in cancer patients. Mediastinum, 2018, 2, 26-26.	1.1	3
56	Development and <i>in vivo</i> evaluation of fused benzazole analogs of anti-melanoma agent HA15. Future Medicinal Chemistry, 2021, 13, 1157-1173.	2.3	2
57	Arylbiamidines: synthesis and structural studies en route to anticancer applications. New Journal of Chemistry, 2021, 45, 11893-11897.	2.8	2
58	Potential Involvement of FRS2 in Insulin Signaling. Endocrinology, 2000, 141, 621-628.	2.8	2
59	CLEC12B Is a Melanocytic Gene Regulating the Color of the Skin. Journal of Investigative Dermatology, 2022, 142, 1858-1868.e8.	0.7	2
60	Distinction between 2′- and 3′-Phosphate Isomers of a Fluorescent NADPH Analogue Led to Strong Inhibition of Cancer Cells Migration. Antioxidants, 2021, 10, 723.	5.1	1
61	CLEC12B Decreases Melanoma Proliferation by Repressing Signal Transducer and Activator of Transcription 3. Journal of Investigative Dermatology, 2021, , .	0.7	1
62	Comment on †Testing for BRAF fusions in patients with advanced BRAF/NRAS/KIT wild-type melanomas permits to identify patients who could benefit of anti-MEK targeted therapy'. Journal of Clinical Pathology, 2020, 73, 524-525.	2.0	0
63	The P2Y6-AMPK Pathway Triggers Autophagy during CSF-1-Induced Human Monocyte Differentiation and Is a Potential Target in CMML. Blood, 2014, 124, 4347-4347.	1.4	Ο
64	Meeting report of the 4th biennial Metabolism and Cancer symposium. FEBS Journal, 2021, , .	4.7	0