Xue-Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2846469/publications.pdf

Version: 2024-02-01

304743 345221 2,479 41 22 36 citations h-index g-index papers 45 45 45 2675 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Editorial: Genomics-Enabled Triticeae Improvement. Frontiers in Plant Science, 2022, 13, 871816.	3.6	1
2	Genotyping-by-sequencing and genomic selection applications in hexaploid triticale. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	5
3	Linkage mapping evidence for a syntenic QTL associated with flowering time in perennial C 4 rhizomatous grasses Miscanthus and switchgrass. GCB Bioenergy, 2021, 13, 98-111.	5.6	8
4	Genomic selection of forage agronomic traits in winter wheat. Crop Science, 2021, 61, 410-421.	1.8	5
5	Threeâ€channel electrical impedance spectroscopy for fieldâ€scale root phenotyping. The Plant Phenome Journal, 2021, 4, e20021.	2.0	10
6	Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics, 2021, 53, 564-573.	21.4	138
7	Functional phenomics and genetics of the root economics space in winter wheat using highâ€throughput phenotyping of respiration and architecture. New Phytologist, 2021, 232, 98-112.	7.3	26
8	Impoverishing Roots Will Improve Wheat Yield and Profitability Through Increased Water and Nitrogen Use Efficiencies. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005829.	3.0	7
9	Genome-Wide Association Mapping of Seedling Vigor and Regrowth Vigor in Winter Wheat. Crops, 2021, 1, 153-165.	1.4	3
10	Selection signatures across seven decades of hard winter wheat breeding in the Great Plains of the United States. Plant Genome, 2020, 13, e20032.	2.8	4
11	Improving Dual-Purpose Winter Wheat in the Southern Great Plains of the United States., 2020, , .		3
12	Genome-Wide Association Mapping of Seedling Drought Tolerance in Winter Wheat. Frontiers in Plant Science, 2020, 11, 573786.	3.6	22
13	Imaging of plant current pathways for non-invasive root Phenotyping using a newly developed electrical current source density approach. Plant and Soil, 2020, 450, 567-584.	3.7	24
14	RhizoVision Crown: An Integrated Hardware and Software Platform for Root Crown Phenotyping. Plant Phenomics, 2020, 2020, 3074916.	5.9	74
15	Crop breeding has increased the productivity and leaf wax n-alkane concentration in a series of five winter wheat cultivars developed over the last 60 years. Journal of Plant Physiology, 2019, 243, 153056.	3.5	7
16	Comparison of TaqMan, KASP and rhAmp SNP genotyping platforms in hexaploid wheat. PLoS ONE, 2019, 14, e0217222.	2.5	54
17	Genomic Selection of Forage Quality Traits in Winter Wheat. Crop Science, 2019, 59, 2473-2483.	1.8	7
18	Screening oat germplasm for better adaptation to cold stress in the Southern Great Plains of the United States. Journal of Agronomy and Crop Science, 2019, 205, 213-219.	3.5	4

#	Article	IF	Citations
19	Genome-Wide Association Mapping of Seedling Heat Tolerance in Winter Wheat. Frontiers in Plant Science, 2018, 9, 1272.	3.6	103
20	Triticale Improvement for Forage and Cover Crop Uses in the Southern Great Plains of the United States. Frontiers in Plant Science, 2018, 9, 1130.	3.6	59
21	Contrasting geographic patterns of genetic variation for molecular markers vs. phenotypic traits in the energy grass <i>Miscanthus sinensis</i> CCB Bioenergy, 2013, 5, 562-571.	5.6	28
22	Transgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soils. Molecular Breeding, 2012, 30, 377-391.	2.1	53
23	High Resolution Genetic Mapping by Genome Sequencing Reveals Genome Duplication and Tetraploid Genetic Structure of the Diploid Miscanthus sinensis. PLoS ONE, 2012, 7, e33821.	2.5	103
24	Characterization of a male sterile mutant from progeny of a transgenic plant containing a leaf senescence-inhibition gene in wheat. Euphytica, 2011, 177, 241-251.	1.2	5
25	A consensus map of rye integrating mapping data from five mapping populations. Theoretical and Applied Genetics, 2009, 118, 793-800.	3.6	46
26	Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes. Plant Science, 2009, 176, 479-488.	3.6	81
27	Transgenesis in Forage Crops. , 2009, , 335-340.		O
28	Allopolyploidization-accommodated Genomic Sequence Changes in Triticale. Annals of Botany, 2008, 101, 825-832.	2.9	116
29	Biotechnological Improvement of Forage Crops. , 2007, , 333-338.		O
30	Structural and functional analyses of the wheat genomes based on expressed sequence tags (ESTs) related to abiotic stresses. Genome, 2006, 49, 1324-1340.	2.0	17
31	Timing and rate of genome variation in triticale following allopolyploidization. Genome, 2006, 49, 950-958.	2.0	86
32	Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenetic and Genome Research, 2005, 109, 236-249.	1.1	169
33	Analysis of Expressed Sequence Tag Loci on Wheat Chromosome Group 4. Genetics, 2004, 168, 651-663.	2.9	90
34	A Chromosome Bin Map of 16,000 Expressed Sequence Tag Loci and Distribution of Genes Among the Three Genomes of Polyploid Wheat. Genetics, 2004, 168, 701-712.	2.9	369
35	Development of an Expressed Sequence Tag (EST) Resource for Wheat (Triticum aestivum L.). Genetics, 2004, 168, 585-593.	2.9	87
36	A 2600-Locus Chromosome Bin Map of Wheat Homoeologous Group 2 Reveals Interstitial Gene-Rich Islands and Colinearity With Rice. Genetics, 2004, 168, 625-637.	2.9	78

Xue-Feng

#	Article	IF	CITATIONS
37	Polyploidization-induced genome variation in triticale. Genome, 2004, 47, 839-848.	2.0	95
38	Comparative DNA Sequence Analysis of Wheat and Rice Genomes. Genome Research, 2003, 13, 1818-1827.	5. 5	369
39	Molecular linkage mapping in rye (Secale cereale L.). Theoretical and Applied Genetics, 2001, 102, 517-523.	3.6	56
40	Physical mapping of restriction fragment length polymorphism (RFLP) markers in homoeologous groups 1 and 3 chromosomes of wheat by in situ hybridization. Genome, 2001, 44, 401-412.	2.0	21
41	Small Grains as Winter Pasture in the Southern Great Plains of the United States. , 0, , .		1