Alexis Brice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2845789/publications.pdf

Version: 2024-02-01

831 papers 95,931 citations

142 h-index 267 g-index

866 all docs

866
docs citations

866 times ranked 57946 citing authors

#	Article	IF	Citations
1	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	21.4	3,741
2	Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion. Science, 1996, 271, 1423-1427.	12.6	2,642
3	Mutations in the <i>DJ-1</i> Gene Associated with Autosomal Recessive Early-Onset Parkinsonism. Science, 2003, 299, 256-259.	12.6	2,467
4	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
5	Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson's Disease. New England Journal of Medicine, 2009, 361, 1651-1661.	27.0	1,747
6	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	21.4	1,708
7	Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature Genetics, 2014, 46, 989-993.	21.4	1,685
8	Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genetics, 2003, 34, 27-29.	21.4	1,612
9	Association between Early-Onset Parkinson's Disease and Mutations in the <i>Parkin </i> Gene. New England Journal of Medicine, 2000, 342, 1560-1567.	27.0	1,448
10	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	10.2	1,414
11	Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurology, The, 2008, 7, 583-590.	10.2	1,340
12	APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genetics, 2006, 38, 24-26.	21.4	1,087
13	Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurology, The, 2012, 11, 323-330.	10.2	1,039
14	Clinical and Genetic Abnormalities in Patients with Friedreich's Ataxia. New England Journal of Medicine, 1996, 335, 1169-1175.	27.0	1,015
15	Causal relation between $\hat{l}\pm$ -synuclein locus duplication as a cause of familial Parkinson's disease. Lancet, The, 2004, 364, 1169-1171.	13.7	987
16	Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nature Genetics, 2000, 24, 343-345.	21.4	910
17	Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genetics, 1996, 14, 285-291.	21.4	857
18	Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet, The, 2011, 377, 641-649.	13.7	845

#	Article	IF	Citations
19	Parkinson's disease: from monogenic forms to genetic susceptibility factors. Human Molecular Genetics, 2009, 18, R48-R59.	2.9	816
20	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
21	Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genetics, 1997, 17, 65-70.	21.4	758
22	First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the \hat{I}^3 2-subunit gene. Nature Genetics, 2001, 28, 46-48.	21.4	701
23	Early-Onset Autosomal Dominant Alzheimer Disease: Prevalence, Genetic Heterogeneity, and Mutation Spectrum. American Journal of Human Genetics, 1999, 65, 664-670.	6.2	696
24	Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature, 1995, 378, 403-406.	27.8	632
25	G51D αâ€ s ynuclein mutation causes a novel Parkinsonian–pyramidal syndrome. Annals of Neurology, 2013, 73, 459-471.	5.3	580
26	Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genetics, 1999, 23, 296-303.	21.4	575
27	A Wide Variety of Mutations in the Parkin Gene Are Responsible for Autosomal Recessive Parkinsonism in Europe. Human Molecular Genetics, 1999, 8, 567-574.	2.9	571
28	<i>LRRK2</i> G2019S as a Cause of Parkinson's Disease in North African Arabs. New England Journal of Medicine, 2006, 354, 422-423.	27.0	521
29	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	8.1	517
30	What Genetics Tells us About the Causes and Mechanisms of Parkinson's Disease. Physiological Reviews, 2011, 91, 1161-1218.	28.8	515
31	Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments. PLoS Genetics, 2014, 10, e1004580.	3.5	501
32	Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database. PLoS Genetics, 2012, 8, e1002548.	3.5	495
33	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	21.4	494
34	Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders. Science, 2014, 343, 506-511.	12.6	466
35	Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Human Molecular Genetics, 2003, 12, 2277-2291.	2.9	462
36	Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nature Genetics, 2004, 36, 225-227.	21.4	454

#	Article	IF	CITATIONS
37	Genome-Wide Scan for Autism Susceptibility Genes. Human Molecular Genetics, 1999, 8, 805-812.	2.9	453
38	Spinocerebellar ataxia 3 and machadoâ€joseph disease: Clinical, molecular, and neuropathological features. Annals of Neurology, 1996, 39, 490-499.	5.3	401
39	A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain, 2014, 137, 2329-2345.	7.6	377
40	A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies. JAMA Neurology, 2013, 70, 727.	9.0	374
41	Friedreich's ataxia: Point mutations and clinical presentation of compound heterozygotes. Annals of Neurology, 1999, 45, 200-206.	5. 3	371
42	DJ-1(PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurological Sciences, 2003, 24, 159-160.	1.9	363
43	Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Human Molecular Genetics, 2003, 12, 517-526.	2.9	352
44	Hereditary Spastic Paraplegia SPG13 Is Associated with a Mutation in the Gene Encoding the Mitochondrial Chaperonin Hsp60. American Journal of Human Genetics, 2002, 70, 1328-1332.	6.2	347
45	Spectrin mutations cause spinocerebellar ataxia type 5. Nature Genetics, 2006, 38, 184-190.	21.4	346
46	Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. American Journal of Human Genetics, 2016, 98, 500-513.	6.2	333
47	Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain, 2008, 131, 732-746.	7.6	331
48	A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K–Akt signalling. Nature Cell Biology, 2006, 8, 834-842.	10.3	325
49	Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain, 2017, 140, 3191-3203.	7.6	323
50	The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain, 1998, 121, 589-600.	7.6	316
51	Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an Â-synuclein rat model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17510-17515.	7.1	310
52	Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Human Molecular Genetics, 1998, 7, 913-918.	2.9	308
53	Mutations in <i>COQ2</i> in Familial and Sporadic Multiple-System Atrophy. New England Journal of Medicine, 2013, 369, 233-244.	27.0	308
54	Sporadic Infantile Epileptic Encephalopathy Caused by Mutations in PCDH19 Resembles Dravet Syndrome but Mainly Affects Females. PLoS Genetics, 2009, 5, e1000381.	3.5	304

#	Article	IF	Citations
55	Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nature Genetics, 2007, 39, 366-372.	21.4	303
56	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302
57	Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23–24.1. Nature Genetics, 1993, 4, 295-299.	21.4	298
58	Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case–control study. Lancet Neurology, The, 2011, 10, 898-908.	10.2	294
59	A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease–like 2. Nature Genetics, 2001, 29, 377-378.	21.4	288
60	Clinical and pathologic abnormalities in a family with parkinsonism and <i>parkin</i> gene mutations. Neurology, 2001, 56, 555-557.	1.1	288
61	Autosomal dominant cerebellar ataxia type I Clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain, 1996, 119, 1497-1505.	7.6	285
62	Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Annals of Neurology, 2013, 74, 180-187.	5.3	284
63	Parkin mutations are frequent in patients with isolated earlyâ€onset parkinsonism. Brain, 2003, 126, 1271-1278.	7.6	279
64	Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nature Genetics, 2006, 38, 447-451.	21.4	278
65	<i>TARDBP</i> mutations in motoneuron disease with frontotemporal lobar degeneration. Annals of Neurology, 2009, 65, 470-473.	5.3	278
66	Clinical Correlations With Lewy Body Pathology in <i>LRRK2</i> -Related Parkinson Disease. JAMA Neurology, 2015, 72, 100.	9.0	272
67	How much phenotypic variation can be attributed toparkingenotype?. Annals of Neurology, 2003, 54, 176-185.	5.3	271
68	Molecular and Clinical Correlations in Spinocerebellar Ataxia 2: A Study of 32 Families. Human Molecular Genetics, 1997, 6, 709-715.	2.9	270
69	Mutations of the $\langle i \rangle$ presenilin $ \langle i \rangle$ gene in families with early-onset Alzheimer's disease. Human Molecular Genetics, 1995, 4, 2373-2377.	2.9	268
70	SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. Journal of Medical Genetics, 2010, 47, 554-560.	3.2	266
71	Mutations in MTMR13, a New Pseudophosphatase Homologue of MTMR2 and Sbf1, in Two Families with an Autosomal Recessive Demyelinating Form of Charcot-Marie-Tooth Disease Associated with Early-Onset Glaucoma. American Journal of Human Genetics, 2003, 72, 1141-1153.	6.2	263
72	Alzheimer's disease associated with mutations in presenilin 2 is rare and variably penetrant. Human Molecular Genetics, 1996, 5, 985-988.	2.9	259

#	Article	IF	Citations
73	Segregation of a Missense Mutation in the Microtubule-Associated Protein Tau Gene with Familial Frontotemporal Dementia and Parkinsonism. Human Molecular Genetics, 1998, 7, 1825-1829.	2.9	258
74	Large-scale screening of the Gaucher's disease-related glucocerebrosidase gene in Europeans with Parkinson's disease. Human Molecular Genetics, 2011, 20, 202-210.	2.9	258
75	Parkinson's disease age at onset genomeâ€wide association study: Defining heritability, genetic loci, and αâ€synuclein mechanisms. Movement Disorders, 2019, 34, 866-875.	3.9	258
76	A Deleterious Mutation in DNAJC6 Encoding the Neuronal-Specific Clathrin-Uncoating Co-Chaperone Auxilin, Is Associated with Juvenile Parkinsonism. PLoS ONE, 2012, 7, e36458.	2.5	256
77	Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Human Molecular Genetics, 2000, 9, 637-644.	2.9	255
78	A Two-Stage Meta-Analysis Identifies Several New Loci for Parkinson's Disease. PLoS Genetics, 2011, 7, e1002142.	3.5	247
79	Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases. JAMA Neurology, 2017, 74, 780.	9.0	245
80	Title is missing!. Nature Genetics, 2001, 28, 46-48.	21.4	241
81	Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Human Molecular Genetics, 1998, 7, 165-170.	2.9	235
82	Charcot-Marie-Tooth disease type 1A with 17p11.2 duplication. Clinical and electrophysiological phenotype study and factors influencing disease severity in 119 cases. Brain, 1997, 120, 813-823.	7.6	226
83	Specifically neuropathic Gaucher's mutations accelerate cognitive decline in Parkinson's. Annals of Neurology, 2016, 80, 674-685.	5.3	226
84	Alpha-synuclein and Parkinson's disease. Cellular and Molecular Life Sciences, 2000, 57, 1894-1908.	5.4	225
85	Levodopa-responsive dystonia. Brain, 2000, 123, 1112-1121.	7.6	225
86	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	21.4	223
87	FXTAS. Neurology, 2012, 79, 1898-1907.	1.1	221
88	Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain, 2009, 132, 2688-2698.	7.6	218
89	The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Human Molecular Genetics, 2003, 12, 1427-1437.	2.9	217
90	Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurology, The, 2015, 14, 1101-1108.	10.2	213

#	Article	IF	Citations
91	Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain, 2003, 126, 2761-2772.	7.6	212
92	Biochemical analysis of Parkinson's disease-causing variants of Parkin, an E3 ubiquitin–protein ligase with monoubiquitylation capacity. Human Molecular Genetics, 2006, 15, 2059-2075.	2.9	212
93	Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Brain, 1995, 118, 1573-1581.	7.6	211
94	Close Associations between Prevalences of Dominantly Inherited Spinocerebellar Ataxias with CAG-Repeat Expansions and Frequencies of Large Normal CAG Alleles in Japanese and Caucasian Populations. American Journal of Human Genetics, 1998, 63, 1060-1066.	6.2	209
95	Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain, 2008, 131, 772-784.	7.6	206
96	Penetrance of Parkinson disease in glucocerebrosidase gene mutation carriers. Neurology, 2012, 78, 417-420.	1.1	203
97	Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism. Lancet, The, 1998, 352, 1355-1356.	13.7	199
98	Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Human Molecular Genetics, 2012, 21, 3500-3512.	2.9	198
99	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	21.4	198
100	G2019S LRRK2 mutation in French and North African families with Parkinson's disease. Annals of Neurology, 2005, 58, 784-787.	5.3	196
101	Complex relationship between Parkin mutations and Parkinson disease. American Journal of Medical Genetics Part A, 2002, 114, 584-591.	2.4	193
102	Identification of the SPG15 Gene, Encoding Spastizin, as a Frequent Cause of Complicated Autosomal-Recessive Spastic Paraplegia, Including Kjellin Syndrome. American Journal of Human Genetics, 2008, 82, 992-1002.	6.2	192
103	De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nature Genetics, 2014, 46, 640-645.	21.4	192
104	A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. Human Molecular Genetics, 2001, 10, 415-421.	2.9	188
105	Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. European Journal of Human Genetics, 2000, 8, 4-18.	2.8	186
106	Complete sequence of a cDNA encoding an active rat choline acetyltransferase: A tool to investigate the plasticity of cholinergic phenotype expression. Journal of Neuroscience Research, 1989, 23, 266-273.	2.9	185
107	Huntington's disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain, 2003, 126, 1599-1603.	7.6	184
108	Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain, 2004, 127, 759-767.	7.6	184

#	Article	IF	Citations
109	Unusual phenotypic alteration of \hat{l}^2 amyloid precursor protein (\hat{l}^2 APP) maturation by a new Val-715 â†' Met \hat{l}^2 APP-770 mutation responsible for probable early-onset Alzheimerâ \in ^M s disease. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4119-4124.	7.1	183
110	DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases. Annals of Neurology, 2016, 79, 983-990.	5.3	183
111	A Second Locus for Familial Generalized Epilepsy with Febrile Seizures Plus Maps to Chromosome 2q21-q33. American Journal of Human Genetics, 1999, 65, 1078-1085.	6.2	182
112	Clinical, electrophysiological and molecular genetic characteristics of 93 patients with X-linked Charcot-Marie-Tooth disease. Brain, 2001, 124, 1958-1967.	7.6	179
113	Myoclonus–dystonia. Neurology, 2008, 70, 1010-1016.	1.1	179
114	Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary Spastic Paraplegia. American Journal of Human Genetics, 2012, 91, 1051-1064.	6.2	179
115	Diagnosis of Parkinson's disease on the basis of clinical and genetic classification: a population-based modelling study. Lancet Neurology, The, 2015, 14, 1002-1009.	10.2	179
116	X-linked Charcot-Marie-Tooth disease with connexin 32 mutations. Neurology, 1998, 50, 1074-1082.	1.1	176
117	Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 2012, 21, 4996-5009.	2.9	176
118	The genetic landscape of Parkinson's disease. Revue Neurologique, 2018, 174, 628-643.	1.5	176
119	Longitudinal analysis of impulse control disorders in Parkinson disease. Neurology, 2018, 91, e189-e201.	1.1	175
120	Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurology, The, 2020, 19, 145-156.	10.2	175
121	Hereditary spastic paraplegias: an update. Current Opinion in Neurology, 2007, 20, 674-680.	3.6	174
122	Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nature Cell Biology, 2009, 11, 1370-1375.	10.3	173
123	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.8	173
124	Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain, 2014, 137, 2480-2492.	7.6	169
125	Mapping of Spinocerebellar Ataxia 13 to Chromosome 19q13.3-q13.4 in a Family with Autosomal Dominant Cerebellar Ataxia and Mental Retardation. American Journal of Human Genetics, 2000, 67, 229-235.	6.2	166
126	Molecular diagnosis of autosomal dominant early onset Alzheimer's disease: an update. Journal of Medical Genetics, 2005, 42, 793-795.	3.2	165

#	Article	IF	Citations
127	Spinocerebellar ataxia 17 (SCA17) and Huntingtonâ∈™s disease-like 4 (HDL4). Cerebellum, 2008, 7, 170-178.	2.5	164
128	Mutations in the GIGYF2 (TNRC15) Gene at the PARK11 Locus in Familial Parkinson Disease. American Journal of Human Genetics, 2008, 82, 822-833.	6.2	164
129	A Genome-Scale DNA Repair RNAi Screen Identifies SPG48 as a Novel Gene Associated with Hereditary Spastic Paraplegia. PLoS Biology, 2010, 8, e1000408.	5.6	164
130	Spectrum of clinical and electrophysiologic features in HNPP patients with the 17p11.2 deletion. Neurology, 1999, 52, 1440-1440.	1.1	163
131	Progranulin null mutations in both sporadic and familial frontotemporal dementia. Human Mutation, 2007, 28, 846-855.	2.5	162
132	Demographic, neurological and behavioural characteristics and brain perfusion SPECT in frontal variant of frontotemporal dementia. Brain, 2006, 129, 3051-3065.	7.6	158
133	Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain, 1998, 121, 1687-1693.	7.6	157
134	Guadeloupean parkinsonism: a cluster of progressive supranuclear palsyâ€like tauopathy. Brain, 2002, 125, 801-811.	7.6	157
135	Phenotype difference between ALS patients with expanded repeats in <i>C9ORF72</i> and patients with mutations in other ALS-related genes. Journal of Medical Genetics, 2012, 49, 258-263.	3.2	157
136	Akt is altered in an animal model of Huntington's disease and in patients. European Journal of Neuroscience, 2005, 21, 1478-1488.	2.6	156
137	Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson's disease in the European population. Human Molecular Genetics, 2011, 20, 615-627.	2.9	155
138	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	2.5	155
139	CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain, 2001, 124, 1939-1947.	7.6	154
140	Are interruptedSCA2CAG repeat expansions responsible for parkinsonism?. Neurology, 2007, 69, 1970-1975.	1.1	154
141	Loss of Function of Glucocerebrosidase GBA2 Is Responsible for Motor Neuron Defects in Hereditary Spastic Paraplegia. American Journal of Human Genetics, 2013, 92, 238-244.	6.2	154
142	<i>SQSTM1</i> Mutations in French Patients With Frontotemporal Dementia or Frontotemporal Dementia With Amyotrophic Lateral Sclerosis. JAMA Neurology, 2013, 70, 1403-10.	9.0	153
143	Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. Journal of Neurology, 1999, 246, 789-797.	3.6	152
144	Implication of the Immune System in Alzheimer's Disease: Evidence from Genome-Wide Pathway Analysis. Journal of Alzheimer's Disease, 2010, 20, 1107-1118.	2.6	152

#	Article	IF	Citations
145	Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study. Lancet Neurology, The, 2013, 12, 659-668.	10.2	152
146	The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12–p21.1. Nature Genetics, 1995, 10, 84-88.	21.4	151
147	Alteration of Ganglioside Biosynthesis Responsible for Complex Hereditary Spastic Paraplegia. American Journal of Human Genetics, 2013, 93, 118-123.	6.2	151
148	Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function. Journal of Neurochemistry, 2005, 95, 1259-1276.	3.9	149
149	Genetic modifiers of risk and age at onset in GBA associated Parkinson's disease and Lewy body dementia. Brain, 2020, 143, 234-248.	7.6	149
150	Linkage of a new locus for autosomal dominant familial spastic paraplegia to chromosome 2p. Human Molecular Genetics, 1994, 3, 1569-1573.	2.9	148
151	Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy. Brain, 2012, 135, 2980-2993.	7.6	148
152	Genetic Analysis of Inherited Leukodystrophies. JAMA Neurology, 2013, 70, 875.	9.0	147
153	Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain, 2006, 129, 686-694.	7.6	146
154	Genetic Variants of the \hat{l}_{\pm} -Synuclein Gene SNCA Are Associated with Multiple System Atrophy. PLoS ONE, 2009, 4, e7114.	2.5	144
155	Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain, 2014, 137, 2444-2455.	7.6	144
156	Myoclonus-dystonia syndrome: Îμ-sarcoglycan mutations and phenotype. Annals of Neurology, 2002, 52, 489-492.	5.3	143
157	C9orf72 repeat expansions are a rare genetic cause of parkinsonism. Brain, 2013, 136, 385-391.	7.6	143
158	Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Human Molecular Genetics, 1998, 7, 171-176.	2.9	141
159	Mutations in <i>KCND3</i> cause spinocerebellar ataxia type 22. Annals of Neurology, 2012, 72, 859-869.	5.3	138
160	Autosomal recessive cortical myoclonic tremor and epilepsy: association with a mutation in the potassium channel associated gene CNTN2. Brain, 2013, 136, 1155-1160.	7.6	137
161	Ultrastructural PMP22 expression in inherited demyelinating neuropathies. Annals of Neurology, 1996, 39, 813-817.	5.3	136
162	Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2012-2026.	4.1	134

#	Article	IF	Citations
163	Screening for Genomic Rearrangements and Methylation Abnormalities of the 15q11-q13 Region in Autism Spectrum Disorders. Biological Psychiatry, 2009, 66, 349-359.	1.3	133
164	$\hat{l}_{\pm}\text{-Synuclein}$ Gene Rearrangements in Dominantly Inherited Parkinsonism. Archives of Neurology, 2009, 66, 102.	4.5	133
165	Genetic overlap between Alzheimer's disease and Parkinson's disease at the MAPT locus. Molecular Psychiatry, 2015, 20, 1588-1595.	7.9	133
166	Prediction of cognition in Parkinson's disease with a clinical–genetic score: a longitudinal analysis of nine cohorts. Lancet Neurology, The, 2017, 16, 620-629.	10.2	131
167	LRRK2 Haplotype Analyses in European and North African Families with Parkinson Disease: A Common Founder for the G2019S Mutation Dating from the 13th Century. American Journal of Human Genetics, 2005, 77, 330-332.	6.2	130
168	Dementia with prominent frontotemporal features associated with L113P presenilin 1 mutation. Neurology, 2000, 55, 1577-1579.	1.1	126
169	Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Dopa-responsive dystonia. Brain, 2009, 132, 1753-1763.	7.6	126
170	Penetrance estimate of <i>LRRK2</i> p.G2019S mutation in individuals of nonâ€Ashkenazi Jewish ancestry. Movement Disorders, 2017, 32, 1432-1438.	3.9	126
171	Targeted Next-Generation Sequencing of a 12.5 Mb Homozygous Region Reveals ANO10 Mutations in Patients with Autosomal-Recessive Cerebellar Ataxia. American Journal of Human Genetics, 2010, 87, 813-819.	6.2	125
172	Adult polyglucosan body disease: Natural History and Key Magnetic Resonance Imaging Findings. Annals of Neurology, 2012, 72, 433-441.	5.3	125
173	Are cognitive changes the first symptoms of Huntington's disease? A study of gene carriers. Journal of Neurology, Neurosurgery and Psychiatry, 1998, 64, 172-177.	1.9	124
174	Parkinson's disease patients show reduced corticalâ€subcortical sensorimotor connectivity. Movement Disorders, 2013, 28, 447-454.	3.9	124
175	Psychiatric and Cognitive Difficulties as Indicators of Juvenile Huntington Disease Onset in 29 Patients. Archives of Neurology, 2007, 64, 813.	4.5	123
176	Parkin-mediated Monoubiquitination of the PDZ Protein PICK1 Regulates the Activity of Acid-sensing Ion Channels. Molecular Biology of the Cell, 2007, 18, 3105-3118.	2.1	122
177	KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations. European Journal of Human Genetics, 2012, 20, 645-649.	2.8	122
178	A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Human Molecular Genetics, 2013, 22, 1039-1049.	2.9	122
179	Genomewide association study of Parkinson's disease clinical biomarkers in 12 longitudinal patients' cohorts. Movement Disorders, 2019, 34, 1839-1850.	3.9	122
180	Clinical and molecular features of spinocerebellar ataxia type 6. Neurology, 1997, 49, 1243-1246.	1.1	119

#	Article	IF	CITATIONS
181	Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology, 2012, 79, 659-667.	1.1	119
182	The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance. Autophagy, 2013, 9, 1801-1817.	9.1	119
183	Ancestral Origins of the Machado-Joseph Disease Mutation: A Worldwide Haplotype Study. American Journal of Human Genetics, 2001, 68, 523-528.	6.2	118
184	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	5. 3	118
185	Neurological, Cardiological, and Oculomotor Progression in 104 Patients With Friedreich Ataxia During Long-term Follow-up. Archives of Neurology, 2007, 64, 558.	4.5	116
186	Mutations other than null mutations producing a pathogenic loss of progranulin in frontotemporal dementia. Human Mutation, 2007, 28, 416-416.	2.5	116
187	Complicated forms of autosomal dominant hereditary spastic paraplegia are frequent in SPG10. Human Mutation, 2009, 30, E376-E385.	2.5	115
188	Polygenic risk of <scp>P</scp> arkinson disease is correlated with disease age at onset. Annals of Neurology, 2015, 77, 582-591.	5. 3	115
189	Consensus Paper: Pathological Mechanisms Underlying Neurodegeneration in Spinocerebellar Ataxias. Cerebellum, 2014, 13, 269-302.	2.5	114
190	LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease. Human Molecular Genetics, 2019, 28, 1645-1660.	2.9	114
191	Autosomal dominant cerebellar ataxia type I. Nerve conduction and evoked potential studies in families with SCA1, SCA2 and SCA3. Brain, 1997, 120, 2141-2148.	7.6	113
192	Cognitive deficits in spinocerebellar ataxia 2. Brain, 1999, 122, 769-777.	7.6	113
193	Analysis of blood-based gene expression in idiopathic Parkinson disease. Neurology, 2017, 89, 1676-1683.	1.1	112
194	Role of Mendelian genes in "sporadic―Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, S66-S70.	2.2	111
195	Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nature Medicine, 2019, 25, 152-164.	30.7	111
196	SCA12 is a rare locus for autosomal dominant cerebellar ataxia: A study of an Indian family. Annals of Neurology, 2001, 49, 117-121.	5. 3	109
197	ABCA2 is a strong genetic risk factor for early-onset Alzheimer's disease. Neurobiology of Disease, 2005, 18, 119-125.	4.4	109
198	Genetic risk of Parkinson disease and progression:. Neurology: Genetics, 2019, 5, e348.	1.9	109

#	Article	IF	CITATIONS
199	NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiology of Aging, 2017, 57, 247.e9-247.e13.	3.1	108
200	Early Cognitive, Structural, and Microstructural Changes in Presymptomatic <i>C9orf72</i> Carriers Younger Than 40 Years. JAMA Neurology, 2018, 75, 236.	9.0	108
201	Association study between iron-related genes polymorphisms and Parkinson's disease. Journal of Neurology, 2002, 249, 801-804.	3.6	107
202	ELOVL5 Mutations Cause Spinocerebellar Ataxia 38. American Journal of Human Genetics, 2014, 95, 209-217.	6.2	107
203	Origin of the Mutations in the parkin Gene in Europe: Exon Rearrangements Are Independent Recurrent Events, whereas Point Mutations May Result from Founder Effects. American Journal of Human Genetics, 2001, 68, 617-626.	6.2	106
204	Charcot-Marie-Tooth Disease Type 2A. JAMA Neurology, 2014, 71, 1036.	9.0	105
205	Perspective on future role of biological markers in clinical therapy trials of Alzheimer's disease: A long-range point of view beyond 2020. Biochemical Pharmacology, 2014, 88, 426-449.	4.4	105
206	The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations. Human Molecular Genetics, 2016, 25, ddw148.	2.9	105
207	Clinical, electrophysiologic, and molecular correlations in 13 families with hereditary neuropathy with liability to pressure palsies and a chromosome 17p11.2 deletion. Neurology, 1995, 45, 2018-2023.	1.1	103
208	Homozygosity mapping of an autosomal recessive form of demyelinating Charcot-Marie-Tooth disease to chromosome 5q23-q33. Human Molecular Genetics, 1996, 5, 1685-1688.	2.9	103
209	SPG3A is the most frequent cause of hereditary spastic paraplegia with onset before age 10 years. Neurology, 2006, 66, 112-114.	1.1	102
210	CYP7B1 mutations in pure and complex forms of hereditary spastic paraplegia type 5. Brain, 2009, 132, 1589-1600.	7.6	102
211	Clinical-genetic model predicts incident impulse control disorders in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1106-1111.	1.9	102
212	Association Between the Extended tau Haplotype and Frontotemporal Dementia. Archives of Neurology, 2002, 59, 935.	4.5	100
213	Exon deletions of SPG4 are a frequent cause of hereditary spastic paraplegia. Journal of Medical Genetics, 2007, 44, 281-284.	3.2	100
214	<scp>P</scp> arkin deficiency modulates <scp>NLRP</scp> 3 inflammasome activation by attenuating an <scp>A</scp> 20â€dependent negative feedback loop. Glia, 2018, 66, 1736-1751.	4.9	100
215	Atlastin1 Mutations Are Frequent in Young-Onset Autosomal Dominant Spastic Paraplegia. Archives of Neurology, 2004, 61, 1867-72.	4.5	99
216	Sequencing of the alpha-synuclein gene in a large series of cases of familial Parkinson's disease fails to reveal any further mutations. The European Consortium on Genetic Susceptibility in Parkinson's Disease (GSPD). Human Molecular Genetics, 1998, 7, 751-753.	2.9	98

#	Article	IF	Citations
217	Park6â€linked parkinsonism occurs in several european families. Annals of Neurology, 2002, 51, 14-18.	5.3	98
218	Spine deformities in Charcot-Marie-Tooth 4C caused by <i>SH3TC2</i> gene mutations. Neurology, 2006, 67, 602-606.	1.1	98
219	Mutation analysis of the paraplegin gene (SPG7) in patients with hereditary spastic paraplegia. Neurology, 2006, 66, 654-659.	1.1	98
220	<i>PRRT2</i> mutations. Neurology, 2012, 79, 170-174.	1.1	98
221	De Novo Expansion of Intermediate Alleles in Spinocerebellar Ataxia 7. Human Molecular Genetics, 1998, 7, 1809-1813.	2.9	96
222	Molecular and Clinical Study of 18 Families with ADCA Type II: Evidence for Genetic Heterogeneity and De Novo Mutation. American Journal of Human Genetics, 1999, 64, 1594-1603.	6.2	96
223	A New Locus for Autosomal Dominant Pure Spastic Paraplegia, on Chromosome 2q24-q34. American Journal of Human Genetics, 2000, 66, 702-707.	6.2	96
224	SPG11 spastic paraplegia. Journal of Neurology, 2009, 256, 104-108.	3.6	96
225	Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing. Genome Biology, 2017, 18, 22.	8.8	96
226	Age at onset variance analysis in spinocerebellar ataxias: A study in a Dutch-French cohort. Annals of Neurology, 2005, 57, 505-512.	5.3	95
227	Screening of CHCHD10 in a French cohort confirms the involvement of this gene in frontotemporal dementia with amyotrophic lateral sclerosis patients. Neurobiology of Aging, 2014, 35, 2884.e1-2884.e4.	3.1	95
228	Mitochondria function associated genes contribute to Parkinson's Disease risk and later age at onset. Npj Parkinson's Disease, 2019, 5, 8.	5.3	95
229	Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets. JAMA Neurology, 2021, 78, 464.	9.0	95
230	cDNA cloning and complete sequence of porcine choline acetyltransferase: in vitro translation of the corresponding RNA yields an active protein Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 9280-9284.	7.1	94
231	An expanded CAG repeat sequence in spinocerebellar ataxia type 7 Genome Research, 1996, 6, 965-971.	5.5	94
232	Spinocerebellar Ataxia Type 7 (SCA7) Shows a Cone–Rod Dystrophy Phenotype. Experimental Eye Research, 2002, 74, 737-745.	2.6	94
233	A multidisciplinary study of patients with early-onset PD with and without parkin mutations. Neurology, 2009, 72, 110-116.	1.1	94
234	A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. Journal of Medical Genetics, 2012, 49, 721-726.	3.2	94

#	Article	IF	Citations
235	C9ORF72 Repeat Expansions in the Frontotemporal Dementias Spectrum of Diseases: A Flow-chart for Genetic Testing. Journal of Alzheimer's Disease, 2013, 34, 485-499.	2.6	93
236	Efficacy of Exome-Targeted Capture Sequencing to Detect Mutations in Known Cerebellar Ataxia Genes. JAMA Neurology, 2018, 75, 591.	9.0	93
237	Biotin-Responsive Basal Ganglia Disease in Ethnic Europeans With Novel SLC19A3 Mutations. Archives of Neurology, 2010, 67, 126-30.	4.5	93
238	Evidence for digenic inheritance in a family with both febrile convulsions and temporal lobe epilepsy implicating chromosomes 18qter and 1q25-q31. Annals of Neurology, 2001, 49, 786-792.	5. 3	92
239	The ?-synuclein Ala53Thr mutation is not a common cause of familial Parkinson's disease: A study of 230 European cases. Annals of Neurology, 1998, 44, 270-273.	5.3	91
240	Clinical Features of Parkinson Disease Patients With Homozygous Leucine-Rich Repeat Kinase 2 G2019S Mutations. Archives of Neurology, 2006, 63, 1250.	4.5	91
241	Composite cerebellar functional severity score: validation of a quantitative score of cerebellar impairment. Brain, 2008, 131, 1352-1361.	7.6	90
242	<i>SPG15</i> is the second most common cause of hereditary spastic paraplegia with thin corpus callosum. Neurology, 2009, 73, 1111-1119.	1.1	90
243	Chromosome 9p-linked families with frontotemporal dementia associated with motor neuron disease. Neurology, 2009, 72, 1669-1676.	1.1	90
244	Analysis of the chromosome X exome in patients with autism spectrum disorders identified novel candidate genes, including TMLHE. Translational Psychiatry, 2012, 2, e179-e179.	4.8	90
245	Loss-of-function mutations in <i>RAB39B</i> are associated with typical early-onset Parkinson disease. Neurology: Genetics, 2015, 1, e9.	1.9	90
246	Variants associated with Gaucher disease in multiple system atrophy. Annals of Clinical and Translational Neurology, 2015, 2, 417-426.	3.7	90
247	The NACP/synuclein gene: chromosomal assignment and screening for alterations in Alzheimer disease. Genomics, 1995, 26, 254-257.	2.9	89
248	A Locus for an Axonal Form of Autosomal Recessive Charcot-Marie-Tooth Disease Maps to Chromosome 1q21.2-q21.3. American Journal of Human Genetics, 1999, 65, 722-727.	6.2	89
249	A major locus for several phenotypes of myoclonus–dystonia on chromosome 7q. Neurology, 2001, 56, 1213-1216.	1.1	89
250	A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain, 2017, 140, 1579-1594.	7.6	89
251	Heterogeneous Intracellular Localization and Expression of Ataxin-3. Neurobiology of Disease, 1998, 5, 335-347.	4.4	88
252	Genetics of Parkinson's disease and biochemical studies of implicated gene products. Current Opinion in Genetics and Development, 2002, 12, 299-306.	3.3	88

#	Article	IF	CITATIONS
253	Spastin mutations are frequent in sporadic spastic paraparesis and their spectrum is different from that observed in familial cases. Journal of Medical Genetics, 2005, 43, 259-265.	3.2	88
254	Parkin protects dopaminergic neurons from excessive Wnt/ \hat{l}^2 -catenin signaling. Biochemical and Biophysical Research Communications, 2009, 388, 473-478.	2.1	88
255	Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain, 2015, 138, 2191-2205.	7.6	88
256	Clinical, laboratory and molecular findings and long-term follow-up data in 96 French patients with PMM2-CDG (phosphomannomutase 2-congenital disorder of glycosylation) and review of the literature. Journal of Medical Genetics, 2017, 54, 843-851.	3.2	88
257	Apolipoprotein E gene in frontotemporal dementia: an association study and meta-analysis. European Journal of Human Genetics, 2002, 10, 399-405.	2.8	87
258	A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia. American Journal of Human Genetics, 2015, 97, 726-737.	6.2	87
259	Genetic characteristics of leucine-rich repeat kinase 2 (LRRK2) associated Parkinson's disease. Parkinsonism and Related Disorders, 2011, 17, 501-508.	2.2	86
260	Fine mapping of de novo CMT1A and HNPP rearrangements within CMTIA-REPs evidences two distinct sex-dependent mechanisms and candidate sequences involved in recombination. Human Molecular Genetics, 1998, 7, 141-148.	2.9	85
261	New mutations in protein kinase \hat{Cl}^3 associated with spinocerebellar ataxia type 14. Annals of Neurology, 2005, 58, 720-729.	5. 3	85
262	Predominant dystonia with marked cerebellar atrophy: A rare phenotype in familial dystonia. Neurology, 2006, 67, 1769-1773.	1.1	85
263	Mechanisms of Genomic Instabilities Underlying Two Common Fragile-Site-Associated Loci, PARK2 and DMD, in Germ Cell and Cancer Cell Lines. American Journal of Human Genetics, 2010, 87, 75-89.	6.2	85
264	Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6. Journal of Medical Genetics, 2014, 51, 479-486.	3.2	85
265	Loss of spatacsin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration. Neurobiology of Disease, 2017, 102, 21-37.	4.4	85
266	Hereditary ataxias and paraparesias: clinical and genetic update. Current Opinion in Neurology, 2018, 31, 462-471.	3.6	85
267	Mutation in the Catalytic Domain of Protein Kinase C \hat{I}^3 and Extension of the Phenotype Associated With Spinocerebellar Ataxia Type 14. Archives of Neurology, 2004, 61, 1242-8.	4.5	84
268	KCNC3: phenotype, mutations, channel biophysics-a study of 260 familial ataxia patients. Human Mutation, 2010, 31, 191-196.	2.5	84
269	Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiology of Aging, 2014, 35, 2419.e23-2419.e25.	3.1	84
270	Phenotype of autosomal dominant spastic paraplegia linked to chromosome 2. Brain, 1996, 119, 1487-1496.	7.6	83

#	Article	IF	CITATIONS
271	Chromosome 6–Linked Autosomal Recessive Early-Onset Parkinsonism: Linkage in European and Algerian Families, Extension of the Clinical Spectrum, and Evidence of a Small Homozygous Deletion in One Family. American Journal of Human Genetics, 1998, 63, 88-94.	6.2	83
272	Genetics of Parkinson's disease: LRRK2 on the rise. Brain, 2005, 128, 2760-2762.	7.6	83
273	LRRK2 G2019S mutation in Parkinson's disease: A neuropsychological and neuropsychiatric study in a large Algerian cohort. Parkinsonism and Related Disorders, 2010, 16, 676-679.	2.2	83
274	REEP1 mutations in SPG31: Frequency, mutational spectrum, and potential association with mitochondrial morpho-functional dysfunction. Human Mutation, 2011, 32, 1118-1127.	2.5	83
275	Loss of Association of REEP2 with Membranes Leads to Hereditary Spastic Paraplegia. American Journal of Human Genetics, 2014, 94, 268-277.	6.2	83
276	Moving beyond neurons: the role of cell type-specific gene regulation in Parkinson's disease heritability. Npj Parkinson's Disease, 2019, 5, 6.	5.3	83
277	Correlation Between Left Ventricular Hypertrophy and GAA Trinucleotide Repeat Length in Friedreich's Ataxia. Circulation, 1997, 95, 2247-2249.	1.6	83
278	Intergenerational instability of the CAG repeat of the gene for Machado-Joseph disease (MJD1) is affected by the genotype of the normal chromosome: implications for the molecular mechanisms of the instability of the CAG repeat. Human Molecular Genetics, 1996, 5, 923-932.	2.9	82
279	PML clastosomes prevent nuclear accumulation of mutant ataxin-7 and other polyglutamine proteins. Journal of Cell Biology, 2006, 174, 65-76.	5 . 2	82
280	Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. Cell Reports, 2016, 16, 79-91.	6.4	82
281	A Meta-Analysis of α-Synuclein Multiplication in Familial Parkinsonism. Frontiers in Neurology, 2018, 9, 1021.	2.4	82
282	Genome-wide survival study identifies a novel synaptic locus and polygenic score for cognitive progression in Parkinson's disease. Nature Genetics, 2021, 53, 787-793.	21.4	82
283	Eye movement abnormalities correlate with genotype in autosomal dominant cerebellar ataxia type I. Annals of Neurology, 1998, 43, 297-302.	5. 3	81
284	Are (CTG)n expansions at the SCA8 locus rare polymorphisms?. Nature Genetics, 2000, 24, 213-213.	21.4	81
285	Similarities between spinocerebellar ataxia type 7 (SCA7) cell models and human brain: proteins recruited in inclusions and activation of caspase-3. Human Molecular Genetics, 2001, 10, 2569-2579.	2.9	81
286	Missense mutations in the AFG3L2 proteolytic domain account for $\hat{a}^{1}/41.5\%$ of European autosomal dominant cerebellar ataxias. Human Mutation, 2010, 31, 1117-1124.	2.5	81
287	SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded ataxin-7. Human Molecular Genetics, 2010, 19, 181-195.	2.9	81
288	RAD51 Haploinsufficiency Causes Congenital Mirror Movements in Humans. American Journal of Human Genetics, 2012, 90, 301-307.	6.2	81

#	Article	IF	CITATIONS
289	A novel DCC mutation and genetic heterogeneity in congenital mirror movements. Neurology, 2011, 76, 260-264.	1.1	80
290	Analysis of the SCAI CAG repeat in a large number of families with dominant ataxia: Clinical and molecular correlations. Annals of Neurology, 1995, 37, 176-180.	5. 3	79
291	A Conditional Pan-Neuronal Drosophila Model of Spinocerebellar Ataxia 7 with a Reversible Adult Phenotype Suitable for Identifying Modifier Genes. Journal of Neuroscience, 2007, 27, 2483-2492.	3.6	79
292	Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7. Nature Structural and Molecular Biology, 2014, 21, 955-961.	8.2	79
293	Monogenic idiopathic epilepsies. Lancet Neurology, The, 2004, 3, 209-218.	10.2	78
294	Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Annals of Neurology, 2004, 55, 97-104.	5.3	78
295	Autosomal dominant cerebellar ataxias: Imaging biomarkers with high effect sizes. NeuroImage: Clinical, 2018, 19, 858-867.	2.7	78
296	Epsilon sarcoglycan mutations and phenotype in French patients with myoclonic syndromes. Journal of Medical Genetics, 2005, 43, 394-400.	3.2	77
297	High nigral iron deposition in LRRK2 and Parkin mutation carriers using R2* relaxometry. Movement Disorders, 2015, 30, 1077-1084.	3.9	77
298	Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data. Lancet Neurology, The, 2016, 15, 585-596.	10.2	77
299	Dominant partial epilepsies: A clinical, electrophysiological and genetic study of 19 European families. Brain, 2000, 123, 1247-1262.	7.6	76
300	A novel presenilin 1 mutation resulting in familial Alzheimer's disease with an onset age of 29 years. NeuroReport, 1996, 7, 1582-1584.	1.2	75
301	Clinical and MRI findings in spinocerebellar ataxia type 5. Neurology, 1999, 53, 1355-1355.	1.1	75
302	The Ile93Met mutation in the ubiquitin carboxy-terminal-hydrolase-L1 gene is not observed in European cases with familial Parkinson's disease. Neuroscience Letters, 1999, 270, 1-4.	2.1	75
303	Recent advances in hereditary spastic paraplegia. Current Opinion in Neurology, 2001, 14, 457-463.	3.6	75
304	Subtle Cognitive Impairment but No Dementia in Patients With Spastin Mutations. Archives of Neurology, 2003, 60, 1113.	4.5	75
305	Autism, language delay and mental retardation in a patient with $7q11$ duplication. Journal of Medical Genetics, 2007, 44, 452-458.	3.2	75
306	FUS mutations in frontotemporal lobar degeneration with amyotrophic lateral sclerosis. Journal of Alzheimer's Disease, 2010, 22, 765-9.	2.6	75

#	Article	IF	Citations
307	Cellular distribution and subcellular localization of spatacsin and spastizin, two proteins involved in hereditary spastic paraplegia. Molecular and Cellular Neurosciences, 2011, 47, 191-202.	2.2	74
308	The phenotype of "pure―autosomal dominant spastic paraplegia. Neurology, 1994, 44, 1274-1274.	1.1	74
309	A locus for simple pure febrile seizures maps to chromosome 6q22-q24. Brain, 2002, 125, 2668-2680.	7.6	73
310	The C289G and C418R missense mutations cause rapid sequestration of human Parkin into insoluble aggregates. Neurobiology of Disease, 2003, 14, 357-364.	4.4	73
311	Muscle coenzyme Q10 deficiencies in ataxia with oculomotor apraxia 1. Neurology, 2007, 68, 295-297.	1.1	73
312	DYT1 mutation in French families with idiopathic torsion dystonia. Brain, 1999, 122, 41-45.	7.6	72
313	Spastic paraplegia due to SPAST mutations is modified by the underlying mutation and sex. Brain, 2018, 141, 3331-3342.	7.6	72
314	Autosomal recessive spastic paraplegia (SPG30) with mild ataxia and sensory neuropathy maps to chromosome 2q37.3. Brain, 2006, 129, 1456-1462.	7.6	71
315	Frontal Assessment Battery is a marker of dorsolateral and medial frontal functions: A SPECT study in frontotemporal dementia. Journal of the Neurological Sciences, 2008, 273, 84-87.	0.6	71
316	A clinical, electrophysiologic, neuropathologic, and genetic study of two large Algerian families with an autosomal recessive demyelinating form of Charcotâ€Marieâ€Tooth disease. Neurology, 1997, 48, 867-873.	1.1	70
317	Genetic Complexity and Parkinson's Disease. Science, 1997, 277, 387-390.	12.6	70
318	Contribution of <i>ATXN2</i> intermediary polyQ expansions in a spectrum of neurodegenerative disorders. Neurology, 2014, 83, 990-995.	1.1	70
319	<i>GRID2</i> mutations span from congenital to mild adult-onset cerebellar ataxia. Neurology, 2015, 84, 1751-1759.	1.1	70
320	High level expression of expanded full-length ataxin-3 in vitro causes cell death and formation of intranuclear inclusions in neuronal cells. Human Molecular Genetics, 1999, 8, 1169-1176.	2.9	69
321	Frequency of the DYT1 Mutation in Primary Torsion Dystonia Without Family History. Archives of Neurology, 2000, 57, 333.	4.5	69
322	Mutations in the SPG3A gene encoding the GTPase atlastin interfere with vesicle trafficking in the ER/Golgi interface and Golgi morphogenesis. Molecular and Cellular Neurosciences, 2007, 35, 1-13.	2.2	69
323	A 22-Year Follow-up Study of Long-term Cardiac Outcome and Predictors of Survival in Friedreich Ataxia. JAMA Neurology, 2015, 72, 1334.	9.0	69
324	Sqstm1 knock-down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of ALS/FTLD. Human Molecular Genetics, 2015, 24, 1682-1690.	2.9	69

#	Article	IF	CITATIONS
325	DNM3 and genetic modifiers of age of onset in LRRK2 Gly2019Ser parkinsonism: a genome-wide linkage and association study. Lancet Neurology, The, 2016, 15, 1248-1256.	10.2	69
326	Mutations in DCC cause isolated agenesis of the corpus callosum with incomplete penetrance. Nature Genetics, 2017, 49, 511-514.	21.4	69
327	Survival in patients with spinocerebellar ataxia types 1, 2, 3, and 6 (EUROSCA): a longitudinal cohort study. Lancet Neurology, The, 2018, 17, 327-334.	10.2	69
328	Decreased choline acetyltransferase mRNA expression in the nucleus basalis of Meynert in Alzheimer disease: an in situ hybridization study Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9549-9553.	7.1	68
329	Polymorphisms of insulin degrading enzyme gene are not associated with Alzheimer's disease. Neuroscience Letters, 2002, 329, 121-123.	2.1	68
330	Genetics of Parkinson's disease and biochemical studies of implicated gene products: Commentary. Current Opinion in Cell Biology, 2002, 14, 653-660.	5 . 4	68
331	Screening of OPTN in French familial amyotrophic lateral sclerosis. Neurobiology of Aging, 2011, 32, 557.e11-557.e13.	3.1	68
332	Extensive White Matter Involvement in Patients With Frontotemporal Lobar Degeneration. JAMA Neurology, 2014, 71, 1562.	9.0	68
333	More missense in amyloid gene. Nature Genetics, 1992, 2, 255-256.	21.4	67
334	Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson's disease. Current Opinion in Neurobiology, 2013, 23, 100-108.	4.2	67
335	<i>KIF1C</i> mutations in two families with hereditary spastic paraparesis and cerebellar dysfunction. Journal of Medical Genetics, 2014, 51, 137-142.	3.2	67
336	Deletion of the progranulin gene in patients with frontotemporal lobar degeneration or Parkinson disease. Neurobiology of Disease, 2008, 31, 41-45.	4.4	66
337	Frequency of Loss of Function Variants in <i>LRRK2</i> in Parkinson Disease. JAMA Neurology, 2018, 75, 1416.	9.0	66
338	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	3.9	66
339	Apolipoprotein E Ϊμ4 Allele and Familial Aggregation of Alzheimer Disease. Archives of Neurology, 1998, 55, 810.	4.5	65
340	Asian Origin for the Worldwide-Spread Mutational Event in Machado-Joseph Disease. Archives of Neurology, 2007, 64, 1502.	4.5	65
341	SCA15 Due to Large ITPR1 Deletions in a Cohort of 333 White Families With Dominant Ataxia. Archives of Neurology, 2011, 68, 637-43.	4.5	65
342	ER-stress-associated functional link between Parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1. Journal of Cell Science, 2013, 126, 2124-33.	2.0	65

#	Article	IF	CITATIONS
343	Charcot-Marie-Tooth disease with intermediate motor nerve conduction velocities: Characterization of 14 C×32 mutations in 35 families. Human Mutation, 1997, 10, 443-450.	2.5	64
344	Guidelines for diagnosis of hereditary neuropathy with liability to pressure palsies. Neuromuscular Disorders, 2000, 10, 206-208.	0.6	64
345	Phenotypical Features of a Moroccan Family With Autosomal Recessive Charcot-Marie-Tooth Disease Associated With the S194X Mutation in the GDAP1 Gene. Archives of Neurology, 2003, 60, 598.	4.5	64
346	Mutation in <i>CPT1C</i> Associated With Pure Autosomal Dominant Spastic Paraplegia. JAMA Neurology, 2015, 72, 561.	9.0	64
347	Fe/S protein assembly gene <i>IBA57</i> mutation causes hereditary spastic paraplegia. Neurology, 2015, 84, 659-667.	1.1	64
348	A <scp>N</scp> ovel <scp>N</scp> onsense <scp>M</scp> utation in <scp><i>DNAJC</i></scp> <i>6</i> <scp>E</scp> xpands the <scp>P</scp> henotype of <scp>A</scp> utosomalâ€ <scp>R</scp> ecessive <scp>J</scp> uvenileâ€ <scp>O</scp> nset <scp>P</scp> arkinson's <scp>D</scp> isease. Annals of Neurology, 2016, 79, 335-337.	5 . 3	64
349	Screening for proteins with polyglutamine expansions in autosomal dominant cerebellar ataxias. Human Molecular Genetics, 1996, 5, 1887-1892.	2.9	63
350	Systematic Analysis of Candidate Genes for Alzheimer's Disease in a French, Genome-Wide Association Study. Journal of Alzheimer's Disease, 2010, 20, 1181-1188.	2.6	63
351	Phenotypic variability in ARCA2 and identification of a core ataxic phenotype with slow progression. Orphanet Journal of Rare Diseases, 2013, 8, 173.	2.7	63
352	In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7. Movement Disorders, 2015, 30, 662-670.	3.9	63
353	TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts. Neurobiology of Aging, 2015, 36, 3116.e5-3116.e8.	3.1	63
354	Inhibition of Lysosome Membrane Recycling Causes Accumulation of Gangliosides that Contribute to Neurodegeneration. Cell Reports, 2018, 23, 3813-3826.	6.4	63
355	Leucine-Rich Repeat Kinase 2 Is Associated With the Endoplasmic Reticulum in Dopaminergic Neurons and Accumulates in the Core of Lewy Bodies in Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2010, 69, 959-972.	1.7	62
356	Interferon beta induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice. Brain, 2013, 136, 1732-1745.	7.6	62
357	New practical definitions for the diagnosis of autosomal recessive spastic ataxia of <scp>C</scp> harlevoix– <scp>S</scp> aguenay. Annals of Neurology, 2015, 78, 871-886.	5. 3	62
358	Two populations of neuronal intranuclear inclusions in SCA7 differ in size and promyelocytic leukaemia protein content. Brain, 2002, 125, 1534-1543.	7.6	61
359	Rare heterozygous parkin variants in French early-onset Parkinson disease patients and controls. Journal of Medical Genetics, 2007, 45, 43-46.	3.2	61
360	Autosomal-dominant cerebellar ataxia with retinal degeneration (ADCA type II) is genetically different from ADCA type I. Annals of Neurology, 1994, 35, 439-444.	5. 3	60

#	Article	IF	CITATIONS
361	Distribution of ataxin-7 in normal human brain and retina. Brain, 2000, 123, 2519-2530.	7.6	60
362	Mapping of a new form of pure autosomal recessive spastic paraplegia (SPG28). Annals of Neurology, 2005, 57, 567-571.	5. 3	60
363	Recent advances in the genetics of spastic paraplegias. Current Neurology and Neuroscience Reports, 2008, 8, 198-210.	4.2	60
364	Prospective diagnostic analysis of copy number variants using SNP microarrays in individuals with autism spectrum disorders. European Journal of Human Genetics, 2014, 22, 71-78.	2.8	60
365	Neuronal distribution of intranuclear inclusions in Huntington's disease with adult onset. NeuroReport, 1998, 9, 1823-1826.	1.2	59
366	FMR1 Premutations Associated With Fragile X–Associated Tremor/Ataxia Syndrome in Multiple System Atrophy. Archives of Neurology, 2005, 62, 962-6.	4.5	59
367	A new Fâ€box protein 7 gene mutation causing typical Parkinson's disease. Movement Disorders, 2015, 30, 1130-1133.	3.9	59
368	Somatic mosaicism of the CAG repeat expansion in spinocerebellar ataxia type $3/M$ achado-Joseph disease. Human Mutation, 1998 , 11 , $23-27$.	2.5	58
369	Nuclear inclusions in spinocerebellar ataxia type 1. Acta Neuropathologica, 1999, 97, 201-207.	7.7	58
370	Identification of <i>VPS35</i> mutations replicated in French families with Parkinson disease. Neurology, 2012, 78, 1449-1450.	1.1	58
371	Mitochondrial dysfunctions in Parkinson's disease. Revue Neurologique, 2014, 170, 339-343.	1.5	58
372	<i>PMPCA</i> mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Brain, 2015, 138, 1505-1517.	7.6	58
373	Massive sequencing of 70 genes reveals a myriad of missing genes or mechanisms to be uncovered in hereditary spastic paraplegias. European Journal of Human Genetics, 2017, 25, 1217-1228.	2.8	58
374	Sex–dependent rearrangements resulting in CMT1A and HNPP. Nature Genetics, 1997, 17, 136-137.	21.4	57
375	Absence of linkage to 8q24 in a European family with familial adult myoclonic epilepsy (FAME). Neurology, 2002, 58, 941-944.	1.1	57
376	PML nuclear bodies and neuronal intranuclear inclusion in polyglutamine diseases. Neurobiology of Disease, 2003, 13, 230-237.	4.4	57
377	The G526R glycyl-tRNA synthetase gene mutation in distal hereditary motor neuropathy type V. Neurology, 2006, 66, 1721-1726.	1.1	57
378	No replication of genetic association between candidate polymorphisms and Alzheimer's disease. Neurobiology of Aging, 2011, 32, 1443-1451.	3.1	57

#	Article	IF	CITATIONS
379	Inflammatory profile in LRRK2-associated prodromal and clinical PD. Journal of Neuroinflammation, 2016, 13, 122.	7.2	57
380	Nonsteroidal <scp>Antiâ€inflammatory</scp> Use and <scp><i>LRRK2</i></scp> Parkinson's Disease Penetrance. Movement Disorders, 2020, 35, 1755-1764.	3.9	57
381	Penetrance of Parkinson's Disease in <i>LRRK2</i> p.G2019S Carriers Is Modified by a Polygenic Risk Score. Movement Disorders, 2020, 35, 774-780.	3.9	57
382	CAG/CTG repeat expansions at the Huntington's disease–like 2 locus are rare in Huntington's disease patients. Neurology, 2002, 58, 965-967.	1.1	56
383	Spinocerebellar ataxia 7 (SCA7). Cytogenetic and Genome Research, 2003, 100, 154-163.	1.1	56
384	Variations in the APP gene promoter region and risk of Alzheimer disease. Neurology, 2007, 68, 684-687.	1.1	56
385	A large-scale genetic association study to evaluate the contribution of Omi/HtrA2 (PARK13) to Parkinson's disease. Neurobiology of Aging, 2011, 32, 548.e9-548.e18.	3.1	56
386	Factors Influencing Disease Progression in Autosomal Dominant Cerebellar Ataxia and Spastic Paraplegia. Archives of Neurology, 2012, 69, 500.	4.5	56
387	Global investigation and meta-analysis of the <i>C9orf72</i> (G ₄ C ₂) _n repeat in Parkinson disease. Neurology, 2014, 83, 1906-1913.	1.1	56
388	The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice. Acta Neuropathologica, 2014, 128, 705-722.	7.7	56
389	Shared genetic contribution to ischemic stroke and Alzheimer's disease. Annals of Neurology, 2016, 79, 739-747.	5.3	56
390	Defining the spectrum of frontotemporal dementias associated with <i>TARDBP</i> mutations. Neurology: Genetics, 2016, 2, e80.	1.9	56
391	<i>PARKIN</i> Inactivation Links Parkinson's Disease to Melanoma. Journal of the National Cancer Institute, 2016, 108, djv340.	6.3	56
392	Inflammatory profile discriminates clinical subtypes in <i>LRRK2</i> àâ€associated Parkinson's disease. European Journal of Neurology, 2017, 24, 427.	3.3	56
393	Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Neuron, 2021, 109, 448-460.e4.	8.1	56
394	Is the common <i>LRRK2</i> G2019S mutation related to dyskinesias in North African Parkinson disease?. Neurology, 2008, 71, 1550-1552.	1.1	55
395	Homologous DNA Exchanges in Humans Can Be Explained by the Yeast Double-Strand Break Repair Model: A Study of 17p11.2 Rearrangements Associated with CMT1A and HNPP. Human Molecular Genetics, 1999, 8, 2285-2292.	2.9	54
396	Prevalence of Dentatorubral-Pallidoluysian Atrophy in a Large Series of White Patients With Cerebellar Ataxia. Archives of Neurology, 2003, 60, 1097.	4.5	54

#	Article	IF	Citations
397	Imaging of dopaminergic dysfunction with [¹²³ I]FP-CIT SPECT in early-onset <i>parkin</i> disease. Neurology, 2004, 63, 2097-2103.	1.1	54
398	Molecular analyses of the LRRK2 gene in European and North African autosomal dominant Parkinson's disease. Journal of Medical Genetics, 2009, 46, 458-464.	3.2	54
399	Delayedâ€onset Friedreich's ataxia revisited. Movement Disorders, 2016, 31, 62-69.	3.9	54
400	Homozygous GRN mutations: new phenotypes and new insights into pathological and molecular mechanisms. Brain, 2020, 143, 303-319.	7.6	54
401	Differences in the Presentation and Progression of Parkinson's Disease by Sex. Movement Disorders, 2021, 36, 106-117.	3.9	54
402	New parkin mutations and atypical phenotypes in families with autosomal recessive parkinsonism. Neurology, 2003, 60, 1378-1381.	1.1	53
403	Deletion of theparkinandPACRGgene promoter in early-onset parkinsonism. Human Mutation, 2007, 28, 27-32.	2.5	53
404	Screening of ARHSP-TCC patients expands the spectrum of <i>SPG11</i> mutations and includes a large scale gene deletion. Human Mutation, 2009, 30, E500-E519.	2.5	53
405	Clinical and genetic analysis of a Tunisian family with autosomal dominant cerebellar ataxia type 1 linked to the SCA2 locus. Neurology, 1994, 44, 1423-1423.	1.1	53
406	Hereditary Spastic Paraplegia With Mental Impairment and Thin Corpus Callosum in Tunisia. Archives of Neurology, 2008, 65, 393-402.	4.5	52
407	<i>SEPT9</i> gene sequencing analysis reveals recurrent mutations in hereditary neuralgic amyotrophy. Neurology, 2009, 72, 1755-1759.	1.1	52
408	29 French adult patients with PMM2-congenital disorder of glycosylation: outcome of the classical pediatric phenotype and depiction of a late-onset phenotype. Orphanet Journal of Rare Diseases, 2014, 9, 207.	2.7	52
409	TMEM240 mutations cause spinocerebellar ataxia 21 with mental retardation and severe cognitive impairment. Brain, 2014, 137, 2657-2663.	7.6	52
410	Congenital mirror movements. Neurology, 2014, 82, 1999-2002.	1.1	52
411	Coding Polymorphisms in the Parkin Gene and Susceptibility to Parkinson Disease. Archives of Neurology, 2003, 60, 1253-6.	4.5	51
412	LRRK2emph Exon 41 Mutations in Sporadic Parkinson Disease in Europeans. Archives of Neurology, 2007, 64, 425.	4.5	51
413	Analysis of Genome-Wide Association Studies of Alzheimer Disease and of Parkinson Disease to Determine If These 2 Diseases Share a Common Genetic Risk. JAMA Neurology, 2013, 70, 1268-76.	9.0	51
414	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 678-679.	10.2	50

#	Article	IF	CITATIONS
415	Amyotrophic lateral sclerosis with neuronal intranuclear protein inclusions. Acta Neuropathologica, 2004, 108, 81-87.	7.7	49
416	Spinocerebellar ataxia type 36 exists in diverse populations and can be caused by a short hexanucleotide GGCCTG repeat expansion. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 986-995.	1.9	49
417	Expanding the Spectrum of Genes Involved in Huntington Disease Using a Combined Clinical and Genetic Approach. JAMA Neurology, 2016, 73, 1105.	9.0	49
418	Loss of paraplegin drives spasticity rather than ataxia in a cohort of 241 patients with <i>SPG7</i> Neurology, 2019, 92, e2679-e2690.	1.1	49
419	Differential distribution of the normal and mutated forms of huntingtin in the human brain. Annals of Neurology, 1997, 42, 712-719.	5.3	48
420	Parkin immunoreactivity in the brain of human and non-human primates: An immunohistochemical analysis in normal conditions and in Parkinsonian syndromes. Journal of Comparative Neurology, 2001, 432, 184-196.	1.6	48
421	Neurotoxic Calcium Transfer from Endoplasmic Reticulum to Mitochondria Is Regulated by Cyclin-Dependent Kinase 5-Dependent Phosphorylation of Tau. Journal of Neuroscience, 2005, 25, 4159-4168.	3.6	48
422	Parkinson's disease-related LRRK2 G2019S mutation results from independent mutational events in humans. Human Molecular Genetics, 2010, 19, 1998-2004.	2.9	48
423	<i>DCTN1</i> Mutation Analysis in Families With Progressive Supranuclear Palsy–Like Phenotypes. JAMA Neurology, 2014, 71, 208.	9.0	48
424	Additional rare variant analysis in Parkinson's disease cases with and without known pathogenic mutations: evidence for oligogenic inheritance. Human Molecular Genetics, 2016, 25, ddw348.	2.9	48
425	Mutations in the netrin-1 gene cause congenital mirror movements. Journal of Clinical Investigation, 2017, 127, 3923-3936.	8.2	48
426	Deregulation of autophagy in postmortem brains of Machadoâ€Joseph disease patients. Neuropathology, 2018, 38, 113-124.	1.2	48
427	The PINK1 kinase-driven ubiquitin ligase Parkin promotes mitochondrial protein import through the presequence pathway in living cells. Scientific Reports, 2019, 9, 11829.	3.3	48
428	Parkinson's disease: from causes to mechanisms. Comptes Rendus - Biologies, 2005, 328, 131-142.	0.2	47
429	Parkin interacts with the proteasome subunit $\hat{l}\pm4$. FEBS Letters, 2005, 579, 3913-3919.	2.8	47
430	Tunisian hereditary spastic paraplegias: clinical variability supported by genetic heterogeneity. Clinical Genetics, 2009, 75, 527-536.	2.0	47
431	Spinocerebellar ataxia type 11 (SCA11) is an uncommon cause of dominant ataxia among French and German kindreds. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 1229-1232.	1.9	47
432	Pentanucleotide repeats at the spinocerebellar ataxia type 31 (SCA31) locus in Caucasians. Neurology, 2011, 77, 1853-1855.	1.1	47

#	Article	IF	CITATIONS
433	<i>SYNE1</i> Mutations in Autosomal Recessive Cerebellar Ataxia. JAMA Neurology, 2013, 70, 1296-31.	9.0	47
434	hnRNPA2B1 and hnRNPA1 mutations are rare in patients with "multisystem proteinopathy―and frontotemporal lobar degeneration phenotypes. Neurobiology of Aging, 2014, 35, 934.e5-934.e6.	3.1	47
435	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Populationâ€6pecific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34, 1851-1863.	3.9	47
436	A large pedigree with early-onset Alzheimer's disease. Neurology, 1995, 45, 80-85.	1.1	46
437	Patients homozygous for the 17p 11.2 duplication in charcot-marie-tooth type 1A Disease. Annals of Neurology, 1997, 41, 104-108.	5. 3	46
438	A new locus (SPG46) maps to 9p21.2-q21.12 in a Tunisian family with a complicated autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum. Neurogenetics, 2010, 11, 441-448.	1.4	46
439	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	9.0	46
440	Phenotypic variability in autosomal dominant cerebellar ataxia type I is unrelated to genetic heterogeneity. Brain, 1993, 116, 1497-1508.	7.6	45
441	Detection of deletion within $17p11.2$ in 7 French families with hereditary neuropathy with liability to pressure palsies (HNPP). Cytogenetic and Genome Research, 1994, 65, 261-264.	1.1	45
442	Pseudo-dominant inheritance and exon 2 triplication in a family with <i>parkin</i> gene mutations. Neurology, 2001, 57, 924-927.	1.1	45
443	Early onset autosomal dominant spastic paraplegia caused by novel mutations in SPG3A. Neurogenetics, 2004, 5, 239-243.	1.4	45
444	Fine-Mapping, Gene Expression and Splicing Analysis of the Disease Associated LRRK2 Locus. PLoS ONE, 2013, 8, e70724.	2.5	45
445	A Novel Long and Unstable CAG/CTG Trinucleotide Repeat on Chromosome 17q. Genomics, 1998, 49, 321-326.	2.9	44
446	Candidate gene studies in focal dystonia. Neurology, 2003, 61, 1097-1101.	1.1	44
447	Parkin is an E3 ubiquitin-ligase for normal and mutant ataxin-2 and prevents ataxin-2-induced cell death. Experimental Neurology, 2007, 203, 531-541.	4.1	44
448	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Nature Communications, 2021, 12, 7342.	12.8	44
449	Spastic paraplegia with thin corpus callosum: description of 20 new families, refinement of the SPG11 locus, candidate gene analysis and evidence of genetic heterogeneity. Neurogenetics, 2006, 7, 149-156.	1.4	43
450	Juvenile-Onset Parkinsonism as a Result of the First Mutation in the Adenosine Triphosphate Orientation Domain of PINK1. Archives of Neurology, 2006, 63, 1257.	4.5	43

#	Article	IF	Citations
451	Subthalamic nucleus stimulation is efficacious in patients with Parkinsonism and LRRK2 mutations. Movement Disorders, 2007, 22, 119-122.	3.9	43
452	The Val158Met COMT polymorphism is a modifier of the age at onset in Parkinson's disease with a sexual dimorphism. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 666-673.	1.9	43
453	Motor neuron degeneration in spastic paraplegia 11 mimics amyotrophic lateral sclerosis lesions. Brain, 2016, 139, aww061.	7.6	43
454	Clinical and genetic analysis of three German kindreds with autosomal dominant cerebellar ataxia type I linked to the SCA2 locus. Journal of Neurology, 1997, 244, 256-261.	3.6	42
455	Ataxin-7 interacts with a Cbl-associated protein that it recruits into neuronal intranuclear inclusions. Human Molecular Genetics, 2001, 10, 1201-1213.	2.9	42
456	Mutations in the glucocerebrosidase gene confer a risk for Parkinson disease in North Africa. Neurology, 2011, 76, 301-303.	1.1	42
457	Spatacsin and spastizin act in the same pathway required for proper spinal motor neuron axon outgrowth in zebrafish. Neurobiology of Disease, 2012, 48, 299-308.	4.4	42
458	Use of support vector machines for disease risk prediction in genome-wide association studies: Concerns and opportunities. Human Mutation, 2012, 33, 1708-1718.	2.5	42
459	Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia. JAMA Network Open, 2021, 4, e2030194.	5.9	42
460	Propensity for somatic expansion increases over the course of life in Huntington disease. ELife, 2021, 10, .	6.0	42
461	Familial essential tremor and idiopathic torsion dystonia are different genetic entities. Neurology, 1993, 43, 2212-2212.	1.1	42
462	Polyneuropathy in autosomal dominant cerebellar ataxias: Phenotype-genotype correlation., 1999, 22, 712-717.		41
463	Cloning of Rat Parkin cDNA and Distribution of Parkin in Rat Brain. Journal of Neurochemistry, 2002, 74, 1773-1776.	3.9	41
464	Identification of sixteen novel candidate genes for late onset Parkinson's disease. Molecular Neurodegeneration, 2021, 16, 35.	10.8	41
465	Hereditary neuralgic amyotrophy and hereditary neuropathy with liability to pressure palsies. Neurology, 1994, 44, 2250-2250.	1.1	41
466	The frequency of $17p11.2$ duplication and Connexin 32 mutations in 282 Charcot-Marie-Tooth families in relation to the mode of inheritance and motor nerve conduction velocity. Neuromuscular Disorders, 2001, 11, 458-463.	0.6	40
467	Characteristics of clinical and electrophysiological pattern of Charcotâ€Marieâ€Tooth 4C. Journal of the Peripheral Nervous System, 2012, 17, 112-122.	3.1	40
468	Mutation analysis of Parkinson's disease genes in a Russian data set. Neurobiology of Aging, 2018, 71, 267.e7-267.e10.	3.1	40

#	Article	IF	CITATIONS
469	Characterization of Recessive Parkinson Disease in a Large Multicenter Study. Annals of Neurology, 2020, 88, 843-850.	5.3	40
470	Intragenic <i>CAMTA1</i> rearrangements cause non-progressive congenital ataxia with or without intellectual disability. Journal of Medical Genetics, 2012, 49, 400-408.	3.2	39
471	Recent advances in understanding dominant spinocerebellar ataxias from clinical and genetic points of view. F1000Research, 2018, 7, 1781.	1.6	39
472	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	7.6	39
473	Plasma neurofilament light chain predicts cerebellar atrophy and clinical progression in spinocerebellar ataxia. Neurobiology of Disease, 2021, 153, 105311.	4.4	39
474	Screening for <i>DJ-1</i> mutations in early onset autosomal recessive parkinsonism. Neurology, 2003, 61, 1429-1431.	1.1	38
475	Genome-wide scan linkage analysis for Parkinson's disease: the European genetic study of Parkinson's disease. Journal of Medical Genetics, 2004, 41, 900-907.	3.2	38
476	Coincidence of two genetic forms of Charcot–Marie–Tooth disease in a single family. Neurology, 2004, 63, 1527-1529.	1.1	38
477	The sepiapterin reductase gene region reveals association in the PARK3 locus: analysis of familial and sporadic Parkinson's disease in European populations. Journal of Medical Genetics, 2005, 43, 557-562.	3.2	38
478	Relations between C9orf72 expansion size in blood, age at onset, age at collection and transmission across generations in patients and presymptomatic carriers. Neurobiology of Aging, 2019, 74, 234.e1-234.e8.	3.1	38
479	Parkin Deficiency Delays Motor Decline and Disease Manifestation in a Mouse Model of Synucleinopathy. PLoS ONE, 2009, 4, e6629.	2.5	38
480	PARK6-linked parkinsonism occurs in several European families. Annals of Neurology, 2002, 51, 14-8.	5.3	38
481	Duplication within chromosome $17p11.2$ in 12 families of French ancestry with Charcot-Marie-Tooth disease type 1a. The French CMT Research Group Journal of Medical Genetics, 1992, 29, 807-812.	3.2	37
482	A Multitracer Dopaminergic PET Study of Young-Onset Parkinsonian Patients With and Without Parkin Gene Mutations. Journal of Nuclear Medicine, 2009, 50, 1244-1250.	5.0	37
483	Cerebellar ataxia with elevated cerebrospinal free sialic acid (CAFSA). Brain, 2009, 132, 801-809.	7.6	37
484	Partial deletion of the <i>MAPT </i> gene: A novel mechanism of FTDP-17. Human Mutation, 2009, 30, E591-E602.	2.5	37
485	Atlastinâ€1, the dynaminâ€like GTPase responsible for spastic paraplegia SPG3A, remodels lipid membranes and may form tubules and vesicles in the endoplasmic reticulum. Journal of Neurochemistry, 2009, 110, 1607-1616.	3.9	37
486	Exonic Deletions of FXN and Early-Onset Friedreich Ataxia. Archives of Neurology, 2012, 69, 912-6.	4.5	37

#	Article	IF	Citations
487	Suggestive association between <i>OPRM1</i> and impulse control disorders in Parkinson's disease. Movement Disorders, 2018, 33, 1878-1886.	3.9	37
488	New Subtype of Spinocerebellar Ataxia With Altered Vertical Eye Movements Mapping to Chromosome 1p32. JAMA Neurology, 2013, 70, 764.	9.0	36
489	Tissue- and Cell-Specific Mitochondrial Defect in Parkin-Deficient Mice. PLoS ONE, 2014, 9, e99898.	2.5	36
490	Clinical and genetic aspects of spinocerebellar degeneration. Current Opinion in Neurology, 2000, 13, 407-413.	3.6	35
491	APOE promoter polymorphisms do not confer independent risk for Alzheimer's disease in a French population. European Journal of Human Genetics, 2000, 8, 713-716.	2.8	35
492	Is the <i>Saitohin</i> gene involved in neurodegenerative diseases?. Annals of Neurology, 2002, 52, 829-832.	5.3	35
493	Biological effects of the PINK1 c.1366C>T mutation: implications in Parkinson disease pathogenesis. Neurogenetics, 2007, 8, 103-109.	1.4	35
494	TREM2 mutations are rare in a French cohort of patients with frontotemporal dementia. Neurobiology of Aging, 2013, 34, 2443.e1-2443.e2.	3.1	35
495	Young-Onset Parkinson Disease With and Without Parkin Gene Mutations. Archives of Neurology, 2003, 60, 713.	4.5	35
496	No evidence for association of familial Parkinson's disease with CAG repeat expansion. Neurology, 1995, 45, 1760-1763.	1.1	34
497	Unstable mutations and neurodegenerative disorders. Journal of Neurology, 1998, 245, 505-510.	3.6	34
498	PARK6 is a common cause of familial parkinsonism. Neurological Sciences, 2002, 23, s117-s118.	1.9	34
499	Association study of the GAB2 gene with the risk of developing Alzheimer's disease. Neurobiology of Disease, 2008, 30, 103-106.	4.4	34
500	Screening of the THAP1 gene in patients with early-onset dystonia: myoclonic jerks are part of the dystonia 6 phenotype. Neurogenetics, 2011, 12, 87-89.	1.4	34
501	Mutations in UBQLN2 are rare in French amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 839.e1-839.e3.	3.1	34
502	SNP arrays in Beckwith–Wiedemann syndrome: An improved diagnostic strategy. European Journal of Medical Genetics, 2013, 56, 546-550.	1.3	34
503	Lateral Temporal Lobe: An Early Imaging Marker of the Presymptomatic GRN Disease?. Journal of Alzheimer's Disease, 2015, 47, 751-759.	2.6	34
504	The E3ÂUbiquitin Ligases TRIM17 and TRIM41 Modulate α-Synuclein Expression by Regulating ZSCAN21. Cell Reports, 2018, 25, 2484-2496.e9.	6.4	34

#	Article	IF	CITATIONS
505	Long-term evolution of patient-reported outcome measures in spinocerebellar ataxias. Journal of Neurology, 2018, 265, 2040-2051.	3.6	34
506	Multiple origins of the spinocerebellar ataxia 7 (SCA7) mutation revealed by linkage disequilibrium studies with closely flanking markers, including an intragenic polymorphism (G3145TG/A3145TG). European Journal of Human Genetics, 1999, 7, 889-896.	2.8	33
507	Mental deficiency in three families with SPG4 spastic paraplegia. European Journal of Human Genetics, 2008, 16, 97-104.	2.8	33
508	Defining the association of TMEM106B variants among frontotemporal lobar degeneration patients with GRN mutations and C9orf72 repeat expansions. Neurobiology of Aging, 2014, 35, 2658.e1-2658.e5.	3.1	33
509	Survival and severity in dominant cerebellar ataxias. Annals of Clinical and Translational Neurology, 2015, 2, 202-207.	3.7	33
510	Parkin maintains mitochondrial levels of the protective Parkinson's disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10. Cell Death and Differentiation, 2015, 22, 1563-1576.	11.2	33
511	Loss of spatacsin impairs cholesterol trafficking and calcium homeostasis. Communications Biology, 2019, 2, 380.	4.4	33
512	Diagnosis of "sporadic―Huntington's disease. Journal of the Neurological Sciences, 1995, 129, 51-55.	0.6	32
513	De novo presenilin 1 mutations are rare in clinically sporadic, early onset Alzheimer's disease cases. French Alzheimer's Disease Study Group Journal of Medical Genetics, 1998, 35, 672-673.	3.2	32
514	The parkin gene and its phenotype. Neurological Sciences, 2001, 22, 51-52.	1.9	32
515	New autosomal recessive cerebellar ataxias with oculomotor apraxia. Current Neurology and Neuroscience Reports, 2005, 5, 411-417.	4.2	32
516	Clinical and genetic features of families with frontotemporal dementia and parkinsonism linked to chromosome 17 with a P301S tau mutation. Journal of Neural Transmission, 2007, 114, 947-950.	2.8	32
517	Are <i>parkin</i> patients particularly suited for deepâ€brain stimulation?. Movement Disorders, 2008, 23, 740-743.	3.9	32
518	EIF4G1 in familial Parkinson's disease: pathogenic mutations or rare benign variants?. Neurobiology of Aging, 2012, 33, 2233.e1-2233.e5.	3.1	32
519	Requirement for Zebrafish Ataxin-7 in Differentiation of Photoreceptors and Cerebellar Neurons. PLoS ONE, 2012, 7, e50705.	2.5	32
520	Motor neuron pathology in CANVAS due to <i>RFC1</i> expansions. Brain, 2022, 145, 2121-2132.	7.6	32
521	The Effect of tau genotype on clinical features in FTDP-17. Parkinsonism and Related Disorders, 2005, 11, 205-208.	2.2	31
522	Large Pathogenic Expansions in the SCA2 and SCA7 Genes Can Be Detected by Fluorescent Repeat-Primed Polymerase Chain Reaction Assay. Journal of Molecular Diagnostics, 2006, 8, 128-132.	2.8	31

#	Article	IF	Citations
523	Dopamine receptor D3 gene and essential tremor in large series of German, Danish and French patients. European Journal of Human Genetics, 2009, 17, 766-773.	2.8	31
524	A total of 220 patients with autosomal dominant spastic paraplegia do not display mutations in the SLC33A1 gene (SPG42). European Journal of Human Genetics, 2010, 18, 1065-1067.	2.8	31
525	Hereditary Spastic Paraplegia With Thin Corpus Callosum. Archives of Neurology, 2006, 63, 756.	4.5	30
526	Heterozygous OPA1 mutations in Behr syndrome. Brain, 2011, 134, e169-e169.	7.6	30
527	Annual change in Friedreich's ataxia evaluated by the Scale for the Assessment and Rating of Ataxia (SARA) is independent of disease severity. Movement Disorders, 2012, 27, 135-139.	3.9	30
528	Populationâ€specific frequencies for <i>LRRK2</i> susceptibility variants in the genetic epidemiology of Parkinson's disease (GEOâ€PD) consortium. Movement Disorders, 2013, 28, 1740-1744.	3.9	30
529	A diagnostic flow chart for <i>POLG-</i> related diseases based on signs sensitivity and specificity. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 646-654.	1.9	30
530	Insufficient evidence for pathogenicity of SNCA His50Gln (H50Q) in Parkinson's disease. Neurobiology of Aging, 2018, 64, 159.e5-159.e8.	3.1	30
531	Examining the Reserve Hypothesis in Parkinson's Disease: A Longitudinal Study. Movement Disorders, 2019, 34, 1663-1671.	3.9	30
532	Clinical, neuropathological, and genetic characterization of STUB1 variants in cerebellar ataxias: a frequent cause of predominant cognitive impairment. Genetics in Medicine, 2020, 22, 1851-1862.	2.4	30
533	Early cognitive decline after bilateral subthalamic deep brain stimulation in Parkinson's disease patients with GBA mutations. Parkinsonism and Related Disorders, 2020, 76, 56-62.	2.2	30
534	Genomewide Association Studies of <scp><i>LRRK2</i></scp> Modifiers of Parkinson's Disease. Annals of Neurology, 2021, 90, 76-88.	5.3	30
535	Molecular genetic analysis of the $17p11.2$ region in patients with hereditary neuropathy with liability to pressure palsies (HNPP). Human Genetics, 1996, 97, 26-34.	3.8	29
536	A de Novo Case of Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) of Maternal Origin: A New Mechanism for Deletion in 17p11.2?. Human Molecular Genetics, 1996, 5, 103-106.	2.9	29
537	Linkage Disequilibrium between the Spinocerebellar Ataxia 3/Machado-Joseph Disease Mutation and Two Intragenic Polymorphisms, One of Which, X359Y, Affects the Stop Codon. American Journal of Human Genetics, 1997, 60, 1548-1552.	6.2	29
538	Ultrastructural localization of parkin in the rat brainstem, thalamus and basal ganglia. Journal of Neural Transmission, 2004, 111, 1209-1218.	2.8	29
539	Neurophysiological evidence of corticospinal tract abnormality in patients with Parkin mutations. Journal of Neurology, 2006, 253, 275-279.	3.6	29
540	Clinical and neuropathologic study of a French family with a mutation in the neuroserpin gene. Neurology, 2007, 69, 79-83.	1.1	29

#	Article	IF	Citations
541	A clinical, neuropsychological and olfactory evaluation of a large family with LRRK2 mutations. Parkinsonism and Related Disorders, 2009, 15, 273-276.	2.2	29
542	LRRK2 G2019S mutation: frequency and haplotype data in South African Parkinson's disease patients. Journal of Neural Transmission, 2010, 117, 847-853.	2.8	29
543	Greater improvement in LRRK2 G2019S patients undergoing Subthalamic Nucleus Deep Brain Stimulation compared to non-mutation carriers. BMC Neuroscience, 2016, 17, 6.	1.9	29
544	Investigation of Autosomal Genetic Sex Differences in Parkinson's Disease. Annals of Neurology, 2021, 90, 35-42.	5.3	29
545	Localization of a 900-bp-long fragment of the human choline acetyltransferase gene to 10q11.2 by nonradioactive in situ hybridization. Genomics, 1991, 9, 210-212.	2.9	28
546	Evidence for apolipoprotein E $\hat{l}\mu 4$ association in early-onset Alzheimer's patients with late-onset relatives. American Journal of Medical Genetics Part A, 1995, 60, 550-553.	2.4	28
547	Huntington's diseaseâ€ike 2 in Brazil—Report of 4 patients. Movement Disorders, 2008, 23, 2244-2247.	3.9	28
548	α-Synuclein gene duplication is present in sporadic Parkinson disease. Neurology, 2008, 71, 1295-1295.	1.1	28
549	Genetic analysis of matrin 3 gene in French amyotrophic lateral sclerosis patients and frontotemporal lobar degeneration with amyotrophic lateral sclerosis patients. Neurobiology of Aging, 2014, 35, 2882.e13-2882.e15.	3.1	28
550	Hereditary spastic paraplegias: identification of a novel SPG57 variant affecting TFG oligomerization and description of HSP subtypes in Sudan. European Journal of Human Genetics, 2017, 25, 100-110.	2.8	28
551	Genetic and Phenotypic Basis of Autosomal Dominant Parkinson's Disease in a Large Multi-Center Cohort. Frontiers in Neurology, 2020, 11, 682.	2.4	28
552	Differential early subcortical involvement in genetic FTD within the GENFI cohort. NeuroImage: Clinical, 2021, 30, 102646.	2.7	28
553	Recurrent polyradiculoneuropathy with the 17p11.2 deletion., 1997, 20, 1184-1186.		27
554	Changes in GAD67 mRNA expression evidenced by in situ hybridization in the brain of R6/2 transgenic mice. Journal of Neurochemistry, 2003, 86, 1369-1378.	3.9	27
555	Apolipoprotein E4 is probably responsible for the chromosome 19 linkage peak for Parkinson's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 136B, 72-74.	1.7	27
556	A new locus for autosomal recessive spastic paraplegia (SPG32) on chromosome 14q12-q21. Neurology, 2007, 68, 1837-1840.	1.1	27
557	A novel locus for autosomal dominant "uncomplicated―hereditary spastic paraplegia maps to chromosome 8p21.1-q13.3. Human Genetics, 2007, 122, 261-273.	3.8	27
558	Automated Categorization of Parkinsonian Syndromes Using <scp>Magnetic Resonance Imaging </scp> in a Clinical Setting. Movement Disorders, 2021, 36, 460-470.	3.9	27

#	Article	IF	Citations
559	Clinical and genetic spectra of 1550 index patients with hereditary spastic paraplegia. Brain, 2022, 145, 1029-1037.	7.6	27
560	Genetics of movement disorders. Current Opinion in Neurology, 1996, 9, 290-297.	3.6	26
561	Mutation analysis of theparkingene in Russian families with autosomal recessive juvenile parkinsonism. Movement Disorders, 2003, 18, 914-919.	3.9	26
562	A novel locus for autosomal recessive spastic ataxia on chromosome 17p. Human Genetics, 2007, 121, 413-420.	3.8	26
563	Semantic and nonfluent aphasic variants, secondarily associated with amyotrophic lateral sclerosis, are predominant frontotemporal lobar degeneration phenotypes in <i>TBK1</i> carriers. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2015, 1, 481-486.	2.4	26
564	Mitochondrial morphology and cellular distribution are altered in SPG31 patients and are linked to DRP1 hyperphosphorylation. Human Molecular Genetics, 2016, 26, ddw425.	2.9	26
565	Using global team science to identify genetic parkinson's disease worldwide. Annals of Neurology, 2019, 86, 153-157.	5. 3	26
566	A founder effect and mutational hot spots may contribute to the most frequent mutations in the SPG3A gene. Neurogenetics, 2006, 7, 131-132.	1.4	25
567	A new complex homozygous large rearrangement of the PINK1 gene in a Sudanese family with early onset Parkinson's disease. Neurogenetics, 2009, 10, 265-270.	1.4	25
568	Clinical, Neuropathological, and Biochemical Characterization of the Novel Tau Mutation P332S. Journal of Alzheimer's Disease, 2012, 31, 741-749.	2.6	25
569	Large-scale assessment of polyglutamine repeat expansions in Parkinson disease. Neurology, 2015, 85, 1283-1292.	1.1	25
570	Body Mass Index Decline Is Related to Spinocerebellar Ataxia Disease Progression. Movement Disorders Clinical Practice, 2017, 4, 689-697.	1.5	25
571	<i>ACO2</i> homozygous missense mutation associated with complicated hereditary spastic paraplegia. Neurology: Genetics, 2018, 4, e223.	1.9	25
572	Plasma NfL levels and longitudinal change rates in <i>C9orf72</i> and <i>GRN</i> -associated diseases: from tailored references to clinical applications. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1278-1288.	1.9	25
573	Sequence analysis of the CCG polymorphic region adjacent to the CAG triplet repeat of the HD gene in normal and HD chromosomes Journal of Medical Genetics, 1995, 32, 399-400.	3.2	24
574	A de novo SPAST mutation leading to somatic mosaicism is associated with a later age at onset in HSP. Neurogenetics, 2007, 8, 231-233.	1.4	24
575	Quantitative assessment of the evolution of cerebellar signs in spinocerebellar ataxias. Movement Disorders, 2011, 26, 534-538.	3.9	24
576	Plasma progranulin levels for frontotemporal dementia in clinical practice: a 10-year French experience. Neurobiology of Aging, 2020, 91, 167.e1-167.e9.	3.1	24

#	Article	IF	CITATIONS
577	Safety and efficacy of riluzole in spinocerebellar ataxia type 2 in France (ATRIL): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurology, The, 2022, 21, 225-233.	10.2	24
578	Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia. Alzheimer's and Dementia, 2022, 18, 1408-1423.	0.8	24
579	Refinement of the locus for autosomal dominant cerebellar ataxia type II to chromosome 3p21.1-14.1. Human Genetics, 1997, 99, 225-232.	3.8	23
580	Edg-2 in myelin-forming cells: Isoforms, genomic mapping, and exclusion in Charcot-Marie-Tooth disease., 1999, 26, 176-185.		23
581	Spinocerebellar ataxia type 10 in the French population. Annals of Neurology, 2002, 51, 408-408.	5.3	23
582	PARK11 is not linked with Parkinson's disease in European families. European Journal of Human Genetics, 2005, 13, 193-197.	2.8	23
583	NIPA1 (SPG6) mutations are a rare cause of autosomal dominant spastic paraplegia in Europe. Neurogenetics, 2007, 8, 155-157.	1.4	23
584	Role of sepiapterin reductase gene at the PARK3 locus in Parkinson's disease. Neurobiology of Aging, 2011, 32, 2108.e1-2108.e5.	3.1	23
585	Biallelic CHP1 mutation causes human autosomal recessive ataxia by impairing NHE1 function. Neurology: Genetics, 2018, 4, e209.	1.9	23
586	Primary Progressive Aphasia Associated With <i>GRN</i> Mutations. Neurology, 2021, 97, e88-e102.	1.1	23
587	The human neuregulin-2 (NRG2) gene: cloning, mapping and evaluation as a candidate for the autosomal recessive form of Charcot-Marie-Tooth disease linked to 5q. Human Genetics, 1999, 104, 326-332.	3.8	22
588	Parkin Modulates Gene Expression in Control and Ceramide-Treated PC12 Cells. Molecular Biology Reports, 2006, 33, 13-32.	2.3	22
589	LOW DISEASE RISK IN RELATIVES OF NORTH AFRICAN LRRK2 PARKINSON DISEASE PATIENTS. Neurology, 2010, 75, 1118-1119.	1.1	22
590	Sleep aspects on videoâ€polysomnography in LRRK2 mutation carriers. Movement Disorders, 2015, 30, 1839-1843.	3.9	22
591	Genetic landscape remodelling in spinocerebellar ataxias: the influence of next-generation sequencing. Journal of Neurology, 2015, 262, 2382-2395.	3.6	22
592	SLC25A46 Mutations Associated with Autosomal Recessive Cerebellar Ataxia in North African Families. Neurodegenerative Diseases, 2017, 17, 208-212.	1.4	22
593	LRRK2 G2019S Parkinson's disease with more benign phenotype than idiopathic. Acta Neurologica Scandinavica, 2018, 138, 425-431.	2.1	22
594	Constant rearrangement of the CMT1A-REP sequences in HNPP patients with a deletion in chromosome 17p11.2: a study of 30 unrelated cases. Human Molecular Genetics, 1995, 4, 1673-1674.	2.9	21

#	Article	IF	CITATIONS
595	D2 dopamine receptor gene in myoclonic dystonia and essential myoclonus. Annals of Neurology, 2000, 48, 127-128.	5.3	21
596	BRAIN SPECT PERFUSION OF FRONTOTEMPORAL DEMENTIA ASSOCIATED WITH MOTOR NEURON DISEASE. Neurology, 2007, 69, 488-490.	1.1	21
597	CHMP2B mutations are rare in French families with frontotemporal lobar degeneration. Journal of Neurology, 2010, 257, 2032-2036.	3.6	21
598	Mutations in the PFN1 gene are not a common cause in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration in France. Neurobiology of Aging, 2013, 34, 1709.e1-1709.e2.	3.1	21
599	Juvenile Frontotemporal Dementia with Parkinsonism Associated with Tau Mutation G389R. Journal of Alzheimer's Disease, 2013, 37, 769-776.	2.6	21
600	Posterior Cortical Atrophy as an Extreme Phenotype of <i>GRN </i> Mutations. JAMA Neurology, 2015, 72, 224.	9.0	21
601	Low cancer prevalence in polyglutamine expansion diseases. Neurology, 2017, 88, 1114-1119.	1.1	21
602	Comparing ataxias with oculomotor apraxia: a multimodal study of AOA1, AOA2 and AT focusing on video-oculography and alpha-fetoprotein. Scientific Reports, 2017, 7, 15284.	3.3	21
603	Interrupted CAG expansions in ATXN2 gene expand the genetic spectrum of frontotemporal dementias. Acta Neuropathologica Communications, 2018, 6, 41.	5.2	21
604	SNCA and mTOR Pathway Single Nucleotide Polymorphisms Interact to Modulate the Age at Onset of Parkinson's Disease. Movement Disorders, 2019, 34, 1333-1344.	3.9	21
605	Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease. PLoS ONE, 2012, 7, e28787.	2.5	21
606	Mendelian Randomisation Study of Smoking, Alcohol, and Coffee Drinking in Relation to Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 267-282.	2.8	21
607	Analysis of ten candidate genes in autism by association and linkage. American Journal of Medical Genetics Part A, 2002, 114, 125-128.	2.4	20
608	Spinocerebellar ataxia with mental retardation (SCA13). Cerebellum, 2005, 4, 43-46.	2.5	20
609	A new phenotype linked to SPG27 and refinement of the critical region on chromosome. Journal of Neurology, 2006, 253, 714-719.	3.6	20
610	A genetic cluster of early onset Parkinson's disease in a Colombian population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 885-889.	1.7	20
611	Genetic bases and phenotypes of autosomal recessive Parkinson disease in a Turkish population. European Journal of Neurology, 2012, 19, 769-775.	3.3	20
612	Identification and characterization of novel PDYN mutations in dominant cerebellar ataxia cases. Journal of Neurology, 2013, 260, 1807-1812.	3.6	20

#	Article	IF	Citations
613	White matter lesions in FTLD: distinct phenotypes characterize <i>GRN</i> and <i>C9ORF72</i> mutations. Neurology: Genetics, 2016, 2, e47.	1.9	20
614	Progressive ataxia of Charolais cattle highlights a role of KIF1C in sustainable myelination. PLoS Genetics, 2018, 14, e1007550.	3.5	20
615	Genetic heterogeneity of autosomal dominant cerebellar ataxia type 1. Neurology, 1993, 43, 1131-1131.	1.1	20
616	Mutation Detection in Machado-Joseph Disease Using Repeat Expansion Detection. Molecular Medicine, 1996, 2, 77-85.	4.4	19
617	No founder effect in three novel Alzheimer's disease families with APP 717 Val>lle mutation. Clerget-darpoux. French Alzheimer's Disease Study Group Journal of Medical Genetics, 1996, 33, 661-664.	3.2	19
618	Apolipoprotein E genotype in familial Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 1997, 63, 394-395.	1.9	19
619	The first de novo mutation of the connexin 32 gene associated with X linked Charcot-Marie-Tooth disease Journal of Medical Genetics, 1998, 35, 251-252.	3.2	19
620	Is Differential Regulation of Mitochondrial Transcripts in Parkinson's Disease Related to Apoptosis?. Journal of Neurochemistry, 1997, 68, 2098-2110.	3.9	19
621	Polyglutamine and polyalanine expansions in ataxin7 result in different types of aggregation and levels of toxicity. Molecular and Cellular Neurosciences, 2006, 31, 438-445.	2.2	19
622	Questioning on the role of D amino acid oxidase in familial amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E107; author reply E108.	7.1	19
623	Rare variants analysis of cutaneous malignant melanoma genes in Parkinson's disease. Neurobiology of Aging, 2016, 48, 222.e1-222.e7.	3.1	19
624	Mutation Analysis of Consanguineous Moroccan Patients with Parkinson's Disease Combining Microarray and Gene Panel. Frontiers in Neurology, 2017, 8, 567.	2.4	19
625	Novel VCP mutations expand the mutational spectrum of frontotemporal dementia. Neurobiology of Aging, 2018, 72, 187.e11-187.e14.	3.1	19
626	Characterisation of the unstable expanded CAG repeat in the MJD1 gene in four Brazilian families of Portuguese descent with Machado-Joseph disease. Journal of Medical Genetics, 1995, 32, 827-830.	3.2	18
627	A preliminary study on early onset schizophrenia and bipolar disorder: large polyglutamine expansions are not involved. Psychiatry Research, 1997, 72, 141-144.	3.3	18
628	Phenotypic and genetic study of a family with hereditary sensory neuropathy and prominent weakness. Muscle and Nerve, 2000, 23, 1508-1514.	2.2	18
629	Clinical and genetic study of familial essential tremor in an isolate of Northern Tajikistan. Movement Disorders, 2000, 15, 1020-1023.	3.9	18
630	Use of haplotype information to test involvement of the LRP gene in Alzheimer's disease in the French population. European Journal of Human Genetics, 2001, 9, 464-468.	2.8	18

#	Article	IF	CITATIONS
631	Spinocerebellar ataxia with sensory neuropathy (SCA25). Cerebellum, 2005, 4, 58-61.	2.5	18
632	Reduced Tau protein expression is associated with frontotemporal degeneration with progranulin mutation. Acta Neuropathologica Communications, 2016, 4, 74.	5.2	18
633	Is the <i>MC1R</i> variant p.R160W associated with Parkinson's?. Annals of Neurology, 2016, 79, 159-161.	5. 3	18
634	Spinocerebellar Ataxias Caused by Polyglutamine Expansions. Advances in Experimental Medicine and Biology, 2002, 516, 47-77.	1.6	18
635	French Machado-Joseph Disease Patients Do Not Exhibit Gametic Segregation Distortion: A Sperm Typing Analysis. Human Molecular Genetics, 1999, 8, 1779-1784.	2.9	17
636	CYP2D6 Polymorphism and Parkinson's disease susceptibility. Movement Disorders, 1999, 14, 230-236.	3.9	17
637	Three parkin gene mutations in a sibship with autosomal recessive early onset parkinsonism. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 71, 531-534.	1.9	17
638	Spastic paraplegia with thinning of the corpus callosum and white matter abnormalities: Further mutations and relative frequency in ZFYVE26/SPG15 in the Italian population. Journal of the Neurological Sciences, 2009, 277, 22-25.	0.6	17
639	Dopaminergic denervation severity depends on COMT Val158Met polymorphism in Parkinson's disease. Parkinsonism and Related Disorders, 2015, 21, 471-476.	2.2	17
640	Hypomorphic variants of cationic amino acid transporter 3 in males with autism spectrum disorders. Amino Acids, 2015, 47, 2647-2658.	2.7	17
641	COMT Val158Met Polymorphism Modulates Huntington's Disease Progression. PLoS ONE, 2016, 11, e0161106.	2.5	17
642	Autosomal recessive hereditary neuropathy with focally folded myelin sheaths and linked to chromosome 11q23: a distinct and homogeneous entity. Neuromuscular Disorders, 2000, 10, 10-15.	0.6	16
643	Construction and validation of a Parkinson's disease mutation genotyping array for the Parkin gene. Movement Disorders, 2007, 22, 932-937.	3.9	16
644	Refinement of the SPG15 candidate interval and phenotypic heterogeneity in three large Arab families. Neurogenetics, 2007, 8, 307-315.	1.4	16
645	Spastic paraplegia 15: Linkage and clinical description of three Tunisian families. Movement Disorders, 2008, 23, 429-433.	3.9	16
646	Nonâ€replication of association for six polymorphisms from metaâ€analysis of genomeâ€wide association studies of Parkinson's disease: Largeâ€scale collaborative study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 220-228.	1.7	16
647	Assessing the prevalence of PINK1 genetic variants in South African patients diagnosed with early- and late-onset Parkinson's disease. Biochemical and Biophysical Research Communications, 2010, 398, 125-129.	2.1	16
648	The spectrum of KIAA0196 variants, and characterization of a murine knockout: implications for the mutational mechanism in hereditary spastic paraplegia type SPG8. Orphanet Journal of Rare Diseases, 2015, 10, 147.	2.7	16

#	Article	IF	Citations
649	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1034.	10.2	16
650	Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2 Parkinson's disease. Neurobiology of Aging, 2021, 97, 148.e17-148.e24.	3.1	16
651	Autosomal-Recessive Forms of Demyelinating Charcot-Marie-Tooth Disease. NeuroMolecular Medicine, 2006, 8, 75-86.	3.4	16
652	The commercial genetic testing landscape for Parkinson's disease. Parkinsonism and Related Disorders, 2021, 92, 107-111.	2.2	16
653	Genetic, cytogenetic and physical refinement of the autosomal recessive CMT linked to 5q31–q33: exclusion of candidate genes including EGR1. European Journal of Human Genetics, 1999, 7, 849-859.	2.8	15
654	The p.Asp216His <i>TOR1A</i> allele effect is not found in the French population. Movement Disorders, 2009, 24, 919-921.	3.9	15
655	Evidence against haploinsuffiency of human ataxin 10 as a cause of spinocerebellar ataxia type 10. Neurogenetics, 2010, 11, 273-274.	1.4	15
656	The L450P mutation in KCND3 brings spinocerebellar ataxia and Brugada syndrome closer together. Neurogenetics, 2013, 14, 257-258.	1.4	15
657	Establishing the role of rare coding variants in known Parkinson's disease risk loci. Neurobiology of Aging, 2017, 59, 220.e11-220.e18.	3.1	15
658	A risk for early-onset Alzheimer's disease associated with the APBB1 gene (FE65) intron 13 polymorphism. Neuroscience Letters, 2003, 342, 5-8.	2.1	14
659	Another Mutation in Cysteine 131 in Protein Kinase Cl³ as a Cause of Spinocerebellar Ataxia Type 14. Archives of Neurology, 2007, 64, 913.	4.5	14
660	From Genes to Proteins in Mendelian Parkinson's Disease: An Overview. Anatomical Record, 2009, 292, 1893-1901.	1.4	14
661	A LRRK2 G2019S mutation carrier from Turkey shares the Japanese haplotype. Neurogenetics, 2009, 10, 271-273.	1.4	14
662	SCA14 in Norway, two families with autosomal dominant cerebellar ataxia and a novel mutation in the PRKCG gene. Acta Neurologica Scandinavica, 2012, 125, 116-122.	2.1	14
663	Genome-wide expression profiling and functional characterization of SCA28 lymphoblastoid cell lines reveal impairment in cell growth and activation of apoptotic pathways. BMC Medical Genomics, 2013, 6, 22.	1.5	14
664	Prediction of Survival With Long‶erm Disease Progression in Most Common Spinocerebellar Ataxia. Movement Disorders, 2019, 34, 1220-1227.	3.9	14
665	Improved Diagnosis of Rare Disease Patients through Systematic Detection of Runs of Homozygosity. Journal of Molecular Diagnostics, 2020, 22, 1205-1215.	2.8	14
666	Heterogeneous Pattern of Selective Pressure for PRRT2 in Human Populations, but No Association with Autism Spectrum Disorders. PLoS ONE, 2014, 9, e88600.	2.5	14

#	Article	IF	Citations
667	Localization of the choline acetyltransferase (CHAT) gene to human chromosome 10. Genomics, 1990, 6, 374-378.	2.9	13
668	No effect of the alpha 1-antichymotrypsin A allele in Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 1997, 63, 103-105.	1.9	13
669	α2-Macroglobulin gene and Alzheimer's disease: Confirmation of association by haplotypes analyses. Annals of Neurology, 2000, 48, 400-402.	5.3	13
670	Spastic paraplegia 5: Locus refinement, candidate gene analysis and clinical description. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 854-861.	1.7	13
671	SPG11 $\hat{a}\in$ " the most common type of recessive spastic paraplegia in Norway?. Acta Neurologica Scandinavica, 2008, 117, 46-50.	2.1	13
672	SUMOylation by SUMO2 is implicated in the degradation of misfolded ataxin-7 via RNF4 in SCA7 models. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	13
673	Intra-familial phenotypic heterogeneity in a Sudanese family with DARS2-related leukoencephalopathy, brainstem and spinal cord involvement and lactate elevation: a case report. BMC Neurology, 2018, 18, 175.	1.8	13
674	Isolated parkinsonism is an atypical presentation of GRN and C9orf72 gene mutations. Parkinsonism and Related Disorders, 2020, 80, 73-81.	2.2	13
675	How much does dardarin contribute to Parkinson's disease?. Lancet, The, 2005, 365, 363-364.	13.7	13
676	Association of Rare Genetic Variants in Opioid Receptors with Tourette Syndrome. Tremor and Other Hyperkinetic Movements, 2019, 9, .	2.0	13
677	Absence of the amyloid precursor protein gene mutation (APP717: Val->lle) in 85 cases of early onset Alzheimer's disease Journal of Neurology, Neurosurgery and Psychiatry, 1993, 56, 112-113.	1.9	12
678	Microsatellite mapping of the deletion in patients with hereditary neuropathy with liability to pressure palsies (HNPP): new molecular tools for the study of the region 17p12â†'p11 and for diagnosis. Cytogenetic and Genome Research, 1996, 72, 20-25.	1.1	12
679	A Fine Integrated Map of the SPG4 Locus Excludes an Expanded CAG Repeat in Chromosome 2p-Linked Autosomal Dominant Spastic Paraplegia. Genomics, 1999, 60, 309-319.	2.9	12
680	Absence of <i>NR4A2</i> exon 1 mutations in 108 families with autosomal dominant Parkinson disease. Neurology, 2004, 62, 2133-2134.	1.1	12
681	Mutations in the <i>FGF14</i> gene are not a major cause of spinocerebellar ataxia in Caucasians. Neurology, 2004, 63, 936-936.	1.1	12
682	Frequency of the <i>LRRK2 </i> G2019S Mutation in Siblings with Parkinson's Disease. Neurodegenerative Diseases, 2007, 4, 195-198.	1.4	12
683	LRRK2: aÂlink between familial andÂsporadic Parkinson's disease?. Pathologie Et Biologie, 2007, 55, 107-110.	2.2	12
684	Parkin occurs in a stable, nonâ€covalent, â^¼110â€kDa complex in brain. European Journal of Neuroscience, 2008, 27, 284-293.	2.6	12

#	Article	IF	Citations
685	Autosomal dominant cerebellar ataxias. Revue Neurologique, 2011, 167, 385-400.	1.5	12
686	Clinical and genetic analysis of 29 Brazilian patients with Huntington's disease-like phenotype. Arquivos De Neuro-Psiquiatria, 2011, 69, 419-423.	0.8	12
687	A Phenotype of Atypical Apraxia of Speech in a Family Carrying SQSTM1 Mutation. Journal of Alzheimer's Disease, 2014, 43, 625-630.	2.6	12
688	Case report of a novel homozygous splice site mutation in PLA2G6 gene causing infantile neuroaxonal dystrophy in a Sudanese family. BMC Medical Genetics, 2018, 19, 72.	2.1	12
689	Molecular genetic approach to the study of mammalian choline acetyltransferase. Brain Research Bulletin, 1989, 22, 147-153.	3.0	11
690	Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies): Genetic analysis of three unrelated SCA2 families. Human Genetics, 1996, 97, 671-676.	3.8	11
691	Metabolic changes in the basal ganglia of patients with Huntington's disease: an insitu hybridization study of cytochrome oxidase subunitl mRNA. Journal of Neurochemistry, 2002, 80, 466-476.	3.9	11
692	The PSPâ€associated <i>MAPT</i> H1 subhaplotype in Guadeloupean atypical Parkinsonism. Movement Disorders, 2008, 23, 2384-2391.	3.9	11
693	Partial deletions of the GRN gene are a cause of frontotemporal lobar degeneration. Neurogenetics, 2014, 15, 95-100.	1.4	11
694	The impact of rare variants in <i>FUS</i> in essential tremor. Movement Disorders, 2015, 30, 721-724.	3.9	11
695	Impairment of episodic memory in genetic frontotemporal dementia: A GENFI study. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12185.	2.4	11
696	Increasing involvement of CAPN1 variants in spastic ataxias and phenotype-genotype correlations. Neurogenetics, 2021, 22, 71-79.	1.4	11
697	Clinical Variability of SYNJ1-Associated Early-Onset Parkinsonism. Frontiers in Neurology, 2021, 12, 648457.	2.4	11
698	Is DRPLA also linked to 14q?. Nature Genetics, 1994, 6, 8-8.	21.4	10
699	Linkage analyses between dominant X-linked Charcot-Marie-Tooth disease, and 15 Xq11–Xq21 microsatellites in a new large family: Three new markers are closely linked to the gene. Neuromuscular Disorders, 1994, 4, 463-469.	0.6	10
700	Segregation analysis of Alzheimer pedigrees: Rare mendelian dominant mutation(s) explain a minority of early-onset cases. American Journal of Medical Genetics Part A, 1996, 67, 9-12.	2.4	10
701	Semiquantitative PCR for the Detection of Exon Rearrangements in the Parkin Gene., 2003, 217, 13-26.		10
702	Molecular Genetic Analysis of Essential Tremor. Russian Journal of Genetics, 2002, 38, 1447-1451.	0.6	10

#	Article	IF	Citations
703	No replication of the association between the Nicastrin gene and familial early-onset Alzheimer's disease. Neuroscience Letters, 2003, 353, 153-155.	2.1	10
704	Follow-up study of the GIGYF2 gene in French families with Parkinson's disease. Neurobiology of Aging, 2010, 31, 1069-1071.	3.1	10
705	Fronto-temporal lobar degeneration: neuropathology in 60 cases. Journal of Neural Transmission, 2011, 118, 753-764.	2.8	10
706	Novel <scp>SPG</scp> 10 mutation associated with dysautonomia, spinal cord atrophy, and skin biopsy abnormality. European Journal of Neurology, 2013, 20, 398-401.	3.3	10
707	Parkinson's disease polygenic risk score is not associated with impulse control disorders: A longitudinal study. Parkinsonism and Related Disorders, 2020, 75, 30-33.	2.2	10
708	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	1.3	10
709	<i>NPTX1</i> mutations trigger endoplasmic reticulum stress and cause autosomal dominant cerebellar ataxia. Brain, 2022, 145, 1519-1534.	7.6	10
710	SCA2 is not a major locus for ADCA type I in French families. American Journal of Medical Genetics Part A, 1995, 60, 382-385.	2.4	9
711	Regional and cellular presenilin 2 (STM2) gene expression in the human brain. NeuroReport, 1996, 7, 2021-2025.	1.2	9
712	Exclusion of the Nurr1 gene in autosomal recessive Parkinson's disease. Journal of Neurology, 2002, 249, 1127-1129.	3.6	9
713	Of Parkin and Parkinson's: light and dark sides of a multifaceted E3 ubiquitin–protein ligase. Drug Discovery Today Disease Mechanisms, 2007, 4, 121-127.	0.8	9
714	Is the early-onset torsion dystonia (EOTD) linked to TOR1A gene as frequent as expected in France?. Neurogenetics, 2008, 9, 143-150.	1.4	9
715	Reply: Are CHCHD10 mutations indeed associated with familial amyotrophic lateral sclerosis?. Brain, 2014, 137, e314-e314.	7.6	9
716	A 7.5â€Mb duplication at chromosome 11q21â€11q22.3 is associated with a novel spastic ataxia syndrome. Movement Disorders, 2015, 30, 262-266.	3.9	9
717	Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Molecular Neurodegeneration, 2016, $11,58.$	10.8	9
718	Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia. Scientific Reports, 2019, 9, 10854.	3.3	9
719	French validation of the questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease–Rating Scale (QUIP-RS). Parkinsonism and Related Disorders, 2019, 63, 117-123.	2.2	9
720	Primary progressive aphasias associated with C9orf72 expansions: Another side of the story. Cortex, 2021, 145, 145-159.	2.4	9

#	Article	IF	Citations
721	De Novo and Dominantly Inherited <scp><i>SPTAN1</i></scp> Mutations Cause Spastic Paraplegia and Cerebellar Ataxia. Movement Disorders, 2022, 37, 1175-1186.	3.9	9
722	Genetic heterogeneity of autosomal dominant cerebellar ataxia type I: evidence for the existence of a third locus. Human Molecular Genetics, 1993, 2, 1483-1485.	2.9	8
723	Familial Parkinson's disease and polymorphism at the CYP2D6 locus Journal of Neurology, Neurosurgery and Psychiatry, 1994, 57, 871-872.	1.9	8
724	Lack of \hat{l}_{\pm} -synuclein gene mutations in families with autosomal dominant Parkinson's disease in Russia. Journal of Neurology, 2000, 247, 968-969.	3.6	8
725	Detection of genomic rearrangements by DHPLC: A prospective study of 90 patients with inherited peripheral neuropathies associated with 17p11.2 rearrangements. American Journal of Medical Genetics, Part A, 2005, 136A, 136-139.	1.2	8
726	Factors influencing the age at onset in familial frontotemporal lobar dementia. Neurology: Genetics, 2017, 3, e203.	1.9	8
727	a-Synuclein Gene and Parkinson's Disease. Science, 1998, 279, 1113g-1117.	12.6	8
728	Heterozygous <scp><i>PNPT1</i></scp> Variants Cause Spinocerebellar Ataxia Type 25. Annals of Neurology, 2022, 92, 122-137.	5.3	8
729	Characteristics of familial aggregation in early-onset Alzheimer's disease: Evidence of subgroups. American Journal of Medical Genetics Part A, 1995, 60, 221-227.	2.4	7
730	The Autosomal Recessive Form of CMT Disease Linked to 5q31-q33. Annals of the New York Academy of Sciences, 1999, 883, 56-59.	3.8	7
731	The G2019SLRRK2 Mutation in Autosomal Dominant European and North African Parkinson's Disease is Frequent and its Penetrance is Age-Dependant. Neurology, 2005, 64, 1826.	1.1	7
732	Michael J. Fox Foundation LRRK2 Consortium: geographical differences in returning genetic research data to study participants. Genetics in Medicine, 2014, 16, 644-645.	2.4	7
733	Evaluation of the interaction between LRRK2 and PARK16 loci in determining risk of Parkinson's disease: analysis of a large multicenter study. Neurobiology of Aging, 2017, 49, 217.e1-217.e4.	3.1	7
734	A unique common ancestor introduced P301L mutation in MAPT gene in frontotemporal dementia patients from Barcelona (Baix Llobregat, Spain). Neurobiology of Aging, 2019, 84, 236.e9-236.e15.	3.1	7
735	Segregation of ATP10B variants in families with autosomal recessive parkinsonism. Acta Neuropathologica, 2020, 140, 783-785.	7.7	7
736	<i>SLITRK2</i> , an X-linked modifier of the age at onset in <i>C9orf72</i> frontotemporal lobar degeneration. Brain, 2021, 144, 2798-2811.	7.6	7
737	Chapter 1 Choline acetyltransferase: a molecular genetic approach. Progress in Brain Research, 1990, 84, 3-10.	1.4	6
738	SMN gene analysis of the spinal form of Charcot-Marie-Tooth disease Journal of Medical Genetics, 1997, 34, 507-508.	3.2	6

#	Article	IF	CITATIONS
739	No evidence for long CAG/CTG repeats in families with spastic paraplegia linked to chromosome 2p21-24. Neuroscience Letters, 2000, 279, 41-44.	2.1	6
740	Rapid detection of 17p11.2 rearrangements by FISHwithout cell culture (direct FISH, DFISH): A prospective study of 130 patients with inherited peripheral neuropathies., 2003, 118A, 43-48.		6
741	Infantile hypokineticâ€hypotonic syndrome due to two novel mutations of the tyrosine hydroxylase gene. Movement Disorders, 2009, 24, 943-945.	3.9	6
742	LRRK2 mutations are uncommon in Turkey. European Journal of Neurology, 2011, 18, e137.	3.3	6
743	Amyloid precursor-like protein 2 cleavage contributes to neuronal intranuclear inclusions and cytotoxicity in spinocerebellar ataxia-7 (SCA7). Neurobiology of Disease, 2011, 41, 33-42.	4.4	6
744	Pantothenate kinase-associated neurodegeneration: Clinical description of 10 patients and identification of new mutations. Movement Disorders, 2011, 26, 1777-1779.	3.9	6
745	Unlocking the genetics of paroxysmal kinesigenic dyskinesia. Brain, 2011, 134, 3431-3434.	7.6	6
746	Screening UBQLN-2 in French frontotemporal lobar degeneration and frontotemporal lobar degeneration–amyotrophic lateral sclerosis patients. Neurobiology of Aging, 2013, 34, 2078.e5-2078.e6.	3.1	6
747	Assessment of the Performance of a Modified Motor Scale as Applied to Juvenile Onset Huntington's Disease. Journal of Huntington's Disease, 2019, 8, 181-193.	1.9	6
748	Novel Homozygous Missense Mutation in the ARG1 Gene in a Large Sudanese Family. Frontiers in Neurology, 2020, 11, 569996.	2.4	6
749	Lack of evidence for association of UQCRC1 with autosomal dominant Parkinson's disease in Caucasian families. Neurogenetics, 2021, 22, 365-366.	1.4	6
750	Does the Expression and Epigenetics of Genes Involved in Monogenic Forms of Parkinson's Disease Influence Sporadic Forms?. Genes, 2022, 13, 479.	2.4	6
751	No mutation in codon 713 of the amyloid precursor gene in schizophrenic patients. Human Molecular Genetics, 1993, 2, 321-321.	2.9	5
752	Gender equality in Machado–Joseph disease. Nature Genetics, 1995, 11, 118-118.	21.4	5
753	Parkin and Parkinson's: More than homonymy?. Annals of Neurology, 2001, 50, 283-285.	5.3	5
754	Parkin depletion delays motor decline dose-dependently without overtly affecting neuropathology in α-synuclein transgenic mice. BMC Neuroscience, 2013, 14, 135.	1.9	5
755	A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Human Molecular Genetics, 2014, 23, 562-562.	2.9	5
756	Pathogenic Variants in ABHD16A Cause a Novel Psychomotor Developmental Disorder With Spastic Paraplegia. Frontiers in Neurology, 2021, 12, 720201.	2.4	5

#	Article	IF	Citations
757	Allelic association at the D14S43 locus in early onset Alzheimer's disease. American Journal of Medical Genetics Part A, 1995, 60, 91-93.	2.4	4
758	Exclusion of the candidate locus FSP1 in six families with late-onset autosomal dominant spastic paraplegia. Neuromuscular Disorders, 1995, 5, 11-17.	0.6	4
759	The Autosomal Recessive Form of CMT Disease Linked to 5q31-q33. Annals of the New York Academy of Sciences, 1999, 883, 453-456.	3.8	4
760	Reply: Two novel mutations in conserved codons indicate that CHCHD10 is a gene associated with motor neuron disease. Brain, 2014, 137, e310-e310.	7.6	4
761	Efficacy of subthalamic nucleus stimulation in C9ORF72 expansion related parkinsonism. Parkinsonism and Related Disorders, 2014, 20, 1104-1105.	2.2	4
762	Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 12184.	3.3	4
763	Gene Panel Sequencing Identifies Novel Pathogenic Mutations in Moroccan Patients with Familial Parkinson Disease. Journal of Molecular Neuroscience, 2021, 71, 142-152.	2.3	4
764	Genome-Wide Analyses Identify KIF5A as a Novel ALS Gene. SSRN Electronic Journal, 0, , .	0.4	4
765	Compensatory Mechanisms Nine Years Before Parkinson's Disease Conversion in a <scp>LRRK2 R1441H</scp> Family. Movement Disorders, 2022, 37, 428-430.	3.9	4
766	Cognitive composites for genetic frontotemporal dementia: GENFI-Cog. Alzheimer's Research and Therapy, 2022, 14, 10.	6.2	4
767	Gene symbol: PARK2. Disease: Parkinsonism, juvenile, autosomal recessive. Human Genetics, 2008, 123, 114.	3.8	4
768	Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 2013, 22, 1696-1696.	2.9	3
769	Reply: Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis. Brain, 2014, 137, e312-e312.	7.6	3
770	Reply: IsCHCHD10Pro34Ser pathogenic for frontotemporal dementia and amyotrophic lateral sclerosis?. Brain, 2015, 138, e386-e386.	7.6	3
771	The missense p.Trp7Arg mutation in GRN gene leads to progranulin haploinsufficiency. Neurobiology of Aging, 2020, 85, 154.e9-154.e11.	3.1	3
772	Exome Sequencing Reveals Signal Transduction Genes Involved in Impulse Control Disorders in Parkinson's Disease. Frontiers in Neurology, 2020, 11, 641.	2.4	3
773	Maladies par expansion de polyglutamine : donn \tilde{A} ©es mol \tilde{A} ©culaires et physiopathologiques. Medecine/Sciences, 2001, 17, 1149-1157.	0.2	3
774	Genetics of inherited human epilepsies. Dialogues in Clinical Neuroscience, 2001, 3, 47-57.	3.7	3

#	Article	IF	CITATIONS
77 5	Premières preuves génétiques de l'implication du récepteur GABAA dans l'épilepsie Medecine/Sciences 2001, 17, 908.	'0.2	3
776	Autosomal dominant cerebellar ataxia type I in Morocco: presence of the SCA1 and SCA3/MJD mutations. European Journal of Neurology, 1996, 3, 369-372.	3.3	2
777	Mutations in the neuroserpin gene are rare in familial dementia. Annals of Neurology, 2000, 47, 688-688.	5.3	2
778	Parkine, α-synucléine et d'autres aspects moléculaires de la maladie de Parkinson. Société De Biolog Journal, 2002, 196, 95-102.	ie 0.3	2
779	Chapter 14 SPG4, the Most Frequent Hereditary Spastic Paraplegia: Clinical and Genetic Aspects. Blue Books of Neurology, 2007, 31, 296-307.	0.1	2
780	The (â^16C > T) substitution in the PLEKHG4 gene is not present among European ADCA patients. Movement Disorders, 2007, 22, 752-753.	3.9	2
781	Neurodegeneration in Parkinson's Disease: Genetics Enlightens Physiopathology. , 2009, , 215-221.		2
782	Reply: A distinct clinical phenotype in a German kindred with motor neuron disease carrying aCHCHD10mutation: Table 1. Brain, 2015, 138, e377-e377.	7.6	2
783	[P4–189]: SYMPTOM ONSET IN GENETIC FRONTOTEMPORAL DEMENTIA. Alzheimer's and Dementia, 2017, 13, P1337.	0.8	2
784	Autosomal dominant paroxysmal kinesigenic choreoathetosis: a clinical and genetic study of two families. Journal of Neurology, Neurosurgery and Psychiatry, 1998, 65, 955-956.	1.9	2
785	Parkin gene related neuronal multisystem disorder. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 419-420.	1.9	2
786	Épilepsies, convulsions fébriles et canaux ioniques : le début d'une longue histoire Medecine/Sciences, 2001, 17, 999.	0.2	2
787	Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex, 2022, 150, 12-28.	2.4	2
788	Maladies par expansion de polyglutamine. Annales De L'Institut Pasteur / Actualités, 2000, 11, 47-67.	0.1	1
789	Chapter 4 Clinical and Genetic Aspects of Spinocerebellar Ataxias with Emphasis on Polyglutamine Expansions. Blue Books of Neurology, 2007, , 113-144.	0.1	1
790	Learning from genetic forms of neurodegeneration. Nature Medicine, 2010, 16, 1371-1371.	30.7	1
791	Autosomal recessive cerebellar ataxias with oculomotor apraxia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 103, 333-341.	1.8	1
792	Reply: <i>CHCHD10 < /i> mutations in Italian patients with sporadic amyotrophic lateral sclerosis. Brain, 2015, 138, e373-e373.</i>	7.6	1

#	Article	IF	CITATIONS
793	Reply: Updated frequency analysis of spinocerebellar ataxia in China. Brain, 2018, 141, e23-e23.	7.6	1
794	Que nous apprennent les g \tilde{A} nes responsables des formes familiales de maladie de Parkinson ?. Bulletin De L'Academie Nationale De Medecine, 2006, 190, 485-498.	0.0	1
795	SCA7, Spinocerebellar Ataxia with Macular Dystrophy. , 2010, , 75-78.		1
796	DerniÃ"re heure : Maladies neurodégénératives par expansion de polyglutamines : le sixiÃ"me gÃ"ne cloné (SCA2). Medecine/Sciences, 1996, 12, 1463.	0.2	1
797	SCA12 is a rare locus for autosomal dominant cerebellar ataxia: A study of an Indian family. Annals of Neurology, 2001, 49, 117-121.	5.3	1
798	Endothelin 1 is not a candidate gene for spinal cerebellar ataxia 1 . Human Molecular Genetics, 1993 , 2 , $1477-1479$.	2.9	0
799	Maladies par expansion de polyglutamine Données moléculaires et physiopathologiques. Journal of Engineering and Technology Management - JET-M, 1997, 14, 47-67.	2.7	O
800	Spinocerebellar Ataxia 7 (SCA7)., 2003,, 85-94.		0
801	Spinocerebellar Ataxia 13, 14, and 16., 2003, , 133-138.		O
802	Phenotype/genotype correlations in Parkinson's disease. , 2005, , 153-164.		0
803	Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Human Molecular Genetics, 2005, 14, 461-461.	2.9	o
804	1.309 Clinical and molecular studies of patients screened for Huntington's disease in a movement disorders clinic from Brazil. Parkinsonism and Related Disorders, 2007, 13, S79.	2.2	0
805	2.109 A novel function of parkin as a transcriptional repressor of the oncogene p53 and its impairment by familial associated Parkinson's disease mutations. Parkinsonism and Related Disorders, 2007, 13, S94.	2.2	O
806	Reply: Unilateral pallidotomy in a patient with parkinsonism and G2019S LRRK2 mutation. Movement Disorders, 2009, 24, 792-792.	3.9	0
807	FP31-WE-04 Complicated autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum: a new locus and further genetic heterogeneity. Journal of the Neurological Sciences, 2009, 285, S106-S107.	0.6	O
808	C06â€The β-catenin repressor GSK-3β is a modifier of age at onset in Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, A17.3-A18.	1.9	0
809	Charcot–Marie–Tooth diseases. , 0, , 166-187.		O
810	The normal parkin sequence. Movement Disorders, 2012, 27, 463-464.	3.9	0

#	Article	IF	Citations
811	Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 2013, 22, 2973-2973.	2.9	O
812	NeurOmics: EU-funded-omics research for diagnosis and therapy in rare neuromuscular and neurodegenerative diseases. Neuromuscular Disorders, 2015, 25, S298-S299.	0.6	0
813	B48 DNA repair pathways as a common genetic mechanism modulating the age at onset in polyglutamine diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A26.1-A26.	1.9	0
814	PINK1 and FLNA mutations association: A role for atypical parkinsonism?. Parkinsonism and Related Disorders, 2016, 26, 78-80.	2.2	0
815	Reply: High prevalence of CHCHD 10 mutations in patients with frontotemporal dementia from China: Table 1. Brain, 2016, 139, e22-e22.	7.6	O
816	Features of hereditary spastic paraplegias in North African region. Journal of the Neurological Sciences, 2017, 381, 17.	0.6	0
817	SCA3, Machado-Joseph Disease., 2018,,.		0
818	G05â€High penetrance and frequent severe psychiatric manifestations in patients with 36–38 cag HTT repeats. , 2018, , .		0
819	Response to Park et al Genetics in Medicine, 2021, 23, 1173-1174.	2.4	O
820	Monogenic PD in Brazil: a step towards precision medicine. Arquivos De Neuro-Psiquiatria, 2021, 79, 563-564.	0.8	0
821	Spinocerebellar Ataxia 17 and Huntington's Disease-like 4. , 2006, , 475-483.		0
822	Charcot-Marie-Tooth Diseases. , 2014, , 519-547.		0
823	Les facteurs génétiques dans l'étiologie de la maladie d'Alzheimer Medecine/Sciences, 1996, 12, 723.	0.2	0
824	Maladies neurologiques héréditaires, de la pathogénie à la physiologie Medecine/Sciences, 1997, 13, 1093.	0.2	0
825	Maladie de Parkinson : premier gÃ"ne identifié. Medecine/Sciences, 1997, 13, 1218.	0.2	0
826	Linkage Disequilibrium between the Spinocerebellar Ataxia 3/Machadoâ€Joseph Disease Mutation and Two Intragenic Polymorphisms, One of Which, X359Y, Affects the Stop Codon. American Journal of Human Genetics, 1997, 60, 1548-1551.	6.2	0
827	La parkine est responsable d'un syndrome parkinsonien de transmission autosomique récessive. Medecine/Sciences, 1998, 14, 1451.	0.2	0
828	Ataxie cérébelleuse autosomique dominante avec dystrophie maculaire progressive : un modÃ"le d'étude des maladies dues à une expansion de polyglutamine Medecine/Sciences, 1998, 14, 758.	0.2	0

ALEXIS BRICE

#	Article	IF	CITATIONS
829	Maladies rares, le modÃ"le français. Bulletin De L'Academie Nationale De Medecine, 2016, 200, 979-991.	0.0	O
830	Genetics of Movement Disorders. , 2017, , 77-92.		0
831	Spinocerebellar ataxia 17 (SCA17) and Huntington's disease-like 4 (HDL4). Cerebellum, 2008, 7, 1-9.	2.5	O