
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2844986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of porosity and ionic liquid impregnation on ionic conductivity of garnet-based flexible sheet electrolytes. Journal of Power Sources, 2022, 517, 230705.	7.8	19
2	Room Temperature Operation of Magnesium Rechargeable Batteries with a Hydrothermally Treated ZnMnO ₃ Defect Spinel Cathode. Electrochemistry, 2022, 90, 027005-027005.	1.4	6
3	Ionic liquid-containing cathodes empowering ceramic solid electrolytes. IScience, 2022, 25, 103896.	4.1	11
4	Effect of EtOMgCl Salt to Suppress Reductive Decomposition of TFSI ^{â^'} Anion in Electrolyte for Magnesium Rechargeable Battery. Electrochemistry, 2022, 90, 037010-037010.	1.4	3
5	The Effect of the Solvation Ability Towards Mg ²⁺ -ion on the Kinetic Behavior of Mg ₃ Bi ₂ Electrode. Journal of the Electrochemical Society, 2022, 169, 030517.	2.9	6
6	Revealing the Origin of Highly Efficient Polysulfide Anchoring and Transformation on Anion‧ubstituted Vanadium Nitride Host. Advanced Functional Materials, 2021, 31, 2008034.	14.9	39
7	Structure Design of Longâ€Life Spinelâ€Oxide Cathode Materials for Magnesium Rechargeable Batteries. Advanced Materials, 2021, 33, e2007539.	21.0	52
8	The crystal structure and electrical/thermal transport properties of Li _{1â°'x} Sn _{2+x} P ₂ and its performance as a Li-ion battery anode material. Journal of Materials Chemistry A, 2021, 9, 7034-7041.	10.3	7
9	Effect of Li ions doping into p-type semiconductor NiO as a hole injection/transfer medium in the CO2 reduction sensitized/catalyzed by Zn-porphyrin/Re-complex upon visible light irradiation. Research on Chemical Intermediates, 2021, 47, 269-285.	2.7	8
10	Lithium-Sulfur Batteries Employing Hybrid-electrolyte Structure with Li ₇ La ₃ Zr ₂ O ₁₂ at Middle Operating Temperature: Effect of Li Salts Concentration on Electrochemical Performance. Electrochemistry, 2021, 89, 197-203.	1.4	3
11	Low-Refractive-Index Deep-Ultraviolet Transparent Poly(fluoroalkyl-co-methylsilsesquioxane) Resins Synthesized by Cosolvent-Free Hydrolytic Polycondensation of Organotrimethoxysilanes. Journal of Physical Chemistry B, 2021, 125, 8238-8242.	2.6	0
12	Rechargeable Lithium Metal Battery. , 2021, , 17-35.		1
13	The Effect of the Coordination Ability on the Mg Plating/Stripping Behavior in Mg(N(CF ₃ SO ₂) ₂) ₂ /Glyme Based Electrolytes. Journal of the Electrochemical Society, 2021, 168, 120528.	2.9	2
14	3D Structural Transition of the Electrodeposited and Electrochemically Dissolved Li Metal onto an Ultramicroelectrode. Journal of Physical Chemistry C, 2020, 124, 22019-22024.	3.1	8
15	Evaluation on hybridâ``electrolyte structure using the liquid electrolyte interlayer containing LiBH4 at Li7La3Zr2O12 Li interface at high operating temperature. Journal of Power Sources, 2020, 478, 228751.	7.8	1
16	Effect of Interaction among Magnesium Ions, Anion, and Solvent on Kinetics of the Magnesium Deposition Process. Journal of Physical Chemistry C, 2020, 124, 28510-28519.	3.1	19
17	Determining Factor on the Polarization Behavior of Magnesium Deposition for Magnesium Battery Anode. ACS Applied Materials & Interfaces, 2020, 12, 25775-25785.	8.0	31
18	Hybrid Effect of Micropatterned Lithium Metal and Three Dimensionally Ordered Macroporous Polyimide Separator on the Cycle Performance of Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 3721-3727.	5.1	14

#	Article	IF	CITATIONS
19	Carbon Coating for Improvements of Electrochemical Properties of Li _{1.1} V _{0.9} O ₂ Anode Active Materials for Li Secondary Batteries. Electrochemistry, 2020, 88, 22-27.	1.4	0
20	Ceramic-Based Flexible Sheet Electrolyte for Li Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10382-10388.	8.0	47
21	Twinning by Merohedry and Thermal Expansion of Zeolitic Clathrasil Deca-dodecasil 3R. Inorganic Chemistry, 2020, 59, 5600-5609.	4.0	0
22	Cosolvent-free synthesis and characterisation of poly(phenyl- <i>co-n</i> -alkylsilsesquioxane) and poly(phenyl- <i>co</i> -vinylsilsesquioxane) glasses with low melting temperatures. Dalton Transactions, 2020, 49, 2487-2495.	3.3	2
23	Cosolvent-free sol–gel dip-coating of silica films from tetraalkoxysilane–water binary systems: precursor solutions of long pot life and their characterization by nuclear magnetic resonance spectroscopy. Journal of the Ceramic Society of Japan, 2020, 128, 772-782.	1.1	3
24	Electrochemical Evaluation of Lithium-Metal Anode in Highly Concentrated Ethylene Carbonate Based Electrolytes. Electrochemistry, 2020, 88, 540-547.	1.4	14
25	Deterioration Analysis of Lithium Metal Anode in Full Cell during Long-Term Cycles. Journal of the Electrochemical Society, 2019, 166, A2618-A2628.	2.9	13
26	Magnesium Storage Performance and Mechanism of 2Dâ€Ultrathin Nanosheetâ€Assembled Spinel MgIn ₂ S ₄ Cathode for Highâ€Temperature Mg Batteries. Small, 2019, 15, e1902236.	10.0	11
27	Magnesium Batteries: Magnesium Storage Performance and Mechanism of 2Dâ€Ultrathin Nanosheetâ€Assembled Spinel MgIn ₂ S ₄ Cathode for Highâ€Temperature Mg Batteries (Small 36/2019). Small, 2019, 15, 1970191.	10.0	0
28	Long-Term Stable Lithium Metal Anode in Highly Concentrated Sulfolane-Based Electrolytes with Ultrafine Porous Polyimide Separator. ACS Applied Materials & Interfaces, 2019, 11, 25833-25843.	8.0	72
29	Three Dimensionally Ordered Macroporous Polybenzimidazole Separator for Li Metal Battery. Chemistry Letters, 2019, 48, 429-432.	1.3	4
30	Computational investigation of the Mg-ion conductivity and phase stability of MgZr ₄ (PO ₄) ₆ . RSC Advances, 2019, 9, 12590-12595.	3.6	24
31	High-Performance Lithium Metal Rechargeable Battery Using an Ultrafine Porous Polyimide Separator with Three-Dimensionally Ordered Macroporous Structure. ACS Applied Energy Materials, 2019, 2, 3896-3903.	5.1	23
32	Modifications in coordination structure of Mg[TFSA] ₂ -based supporting salts for high-voltage magnesium rechargeable batteries. Physical Chemistry Chemical Physics, 2019, 21, 12100-12111.	2.8	50
33	Phosphoric Acid Diethylmethylammonium Trifluoromethanesulfonate-Based Electrolytes for Nonhumidified Intermediate Temperature Fuel Cells. ACS Applied Materials & Interfaces, 2019, 11, 13761-13767.	8.0	5
34	Effect of Pore Size in Three Dimensionally Ordered Macroporous Polyimide Separator on Lithium Deposition/Dissolution Behavior. Journal of the Electrochemical Society, 2019, 166, A754-A761.	2.9	28
35	Zinc-based spinel cathode materials for magnesium rechargeable batteries: toward the reversible spinel–rocksalt transition. Journal of Materials Chemistry A, 2019, 7, 12225-12235.	10.3	59
36	Surface State Change of Lithium Metal Anode in Full Cell during Long Term Cycles. Electrochemistry, 2019, 87, 84-88.	1.4	15

KIYOSHI KANAMURA

#	Article	IF	CITATIONS
37	Highly Durable Non-Platinum Catalyst for Protic Ionic Liquid Based Intermediate Temperature PEFCs. Electrochemistry, 2019, 87, 35-46.	1.4	6
38	Scanning electrochemical cell microscopy for visualization and local electrochemical activities of lithiumâ€ion (de) intercalation process in lithiumâ€ion batteries electrodes. Surface and Interface Analysis, 2019, 51, 27-30.	1.8	18
39	Structure, Microscopic Ordering, and Viscous Properties of Amorphous Poly(nâ€alkylsilsesquioxane) Liquids and Solids Synthesized by Cosolventâ€Free Hydrolytic Polycondensation ofnâ€Alkyltrimethoxysilanes. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800475.	1.8	4
40	The Effect of Cyclic Ethers on Mg Plating/Stripping Reaction in Ionic Liquid Electrolytes. Journal of the Electrochemical Society, 2019, 166, A5054-A5058.	2.9	9
41	Preparation of Biodegradable Polymer Nanospheres Containing Manganese Porphyrin (Mn-Porphyrin). Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1010-1018.	3.7	2
42	Recent progress for all solid state battery using sulfide and oxide solid electrolytes. Journal Physics D: Applied Physics, 2019, 52, 103001.	2.8	67
43	Electrodeposition of Zn from 1‑allyl‑3‑methylimidazolium bromide containing ZnBr2. Journal of Electroanalytical Chemistry, 2019, 832, 467-474.	3.8	7
44	Current Status, Problems, Future Technology for Rechargeable Batteries. Nippon Gomu Kyokaishi, 2019, 92, 405-409.	0.0	0
45	Seed-free hydrothermal synthesis of all-silica deca-dodecasil 3R with essential reagents. Journal of the Ceramic Society of Japan, 2018, 126, 221-229.	1.1	3
46	Enhanced Energy Density of Li ₂ MnSiO ₄ /C Cathode Materials for Lithium-ion Batteries through Mn/Co Substitution. Electrochemistry, 2018, 86, 324-332.	1.4	3
47	Investigation of Carbon-coating Effect on the Electrochemical Performance of LiCoPO ₄ Single Particle. Electrochemistry, 2018, 86, 145-151.	1.4	5
48	Hydrothermal synthesis and catalytic activity of Pt–Rh/CeO ₂ /Al ₂ O ₃ three-way catalysts for automotive exhaust gas. Journal of the Ceramic Society of Japan, 2018, 126, 394-401.	1.1	4
49	A key concept of utilization of both non-Grignard magnesium chloride and imide salts for rechargeable Mg battery electrolytes. Journal of Materials Chemistry A, 2017, 5, 3152-3156.	10.3	46
50	Enhanced Electrochemical Performance of LiMn _{0.75} Fe _{0.25} PO ₄ Nanoplates from Multiple Interface Modification by Using Fluorine-Doped Carbon Coating. ACS Sustainable Chemistry and Engineering, 2017, 5, 4637-4644.	6.7	34
51	Effect of Gold Layer on Interface Resistance between Lithium Metal Anode and Li _{6.25} Al _{0.25} La ₃ Zr ₂ O ₁₂ Solid Electrolyte. Journal of the Electrochemical Society, 2017, 164, A1022-A1025.	2.9	68
52	Li4B4 <i>M</i> 3012Cl (<i>M</i> = Al, Ga): An Electrochemically Stable, Lithium-Ion-Conducting Cubic Boracite with Substituted Boron Sites. Bulletin of the Chemical Society of Japan, 2017, 90, 1279-1286.	3.2	10
53	Thermal Stability of Various Cathode Materials against Li _{6.25} Al _{0.25} La ₃ Zr _{2Electrolyte. Electrochemistry, 2017, 85, 77-81.}	gt; Q& lt;su	b& g5 12<
	Synthesis and characterization of lithium-ion-conductive glass-ceramics of lithium chloroboracite	D. Oluda 1	0

54 Li<sub>4+</sub><i><sub>x</sub></i>B<sub>7</sub>O<sub>12+<1/sub><i><i>x</i> = 0&ndash;1). Journal of the Ceramic Society of Japan, 2017, 125, 348-352.

#	Article	IF	CITATIONS
55	Intrinsic Electrochemical Characteristics in the Individual Needle-like LiCoO ₂ Crystals Synthesized by Flux Growth. Electrochemistry, 2017, 85, 72-76.	1.4	8
56	Characterization and Optimization of Silicon Nanoparticle Anodes. Electrochemistry, 2016, 84, 243-253.	1.4	2
57	Electrochemical Evaluation of Active Materials for Lithium Ion Batteries by One (Single) Particle Measurement. Electrochemistry, 2016, 84, 759-765.	1.4	25
58	The Effect of the Cyclic Ether Additives to the Ethereal Electrolyte Solutions for Mg Secondary Battery. Electrochemistry, 2016, 84, 76-78.	1.4	13
59	Enhanced electrochemical performance from cross-linked polymeric network as binder for Li–S battery cathodes. Journal of Applied Electrochemistry, 2016, 46, 725-733.	2.9	27
60	Poly(n-alkylsilsesquioxane) liquids prepared by cosolvent-free hydrolytic polycondensation of n-alkyltrialkoxysilanes: effects of liquid–liquid phase separation during aging and alkyl chain length on structure and viscosity. Dalton Transactions, 2016, 45, 15532-15540.	3.3	5
61	Good Low-Temperature Properties of Nitrogen-Enriched Porous Carbon as Sulfur Hosts for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2016, 8, 17253-17259.	8.0	46
62	Hydrothermal Synthesis and Electrochemical Properties of Li ₂ Fe <i>_x</i> Mn <i>_x</i> Co _{1−2} <i>_x</i> Cathode Materials for Lithium-ion Batteries. Electrochemistry, 2015, 83, 413-420.	Si Q. «sub>	4<†sub>/C
63	Mechanical Milling Synthesis and Electrochemical Evaluation of Silicon-transition Metal Alloy Anode Materials for Lithium-ion Batteries. Electrochemistry, 2015, 83, 445-451.	1.4	4
64	Deep-ultraviolet transparent monolithic sol–gel derived silica–REPO ₄ (RE = Y, La–Lu) Tj ETQo and application to narrow-band UVB phosphors. Journal of Materials Chemistry C, 2015, 3, 9894-9901.	0 0 0 rgB 5.5	T /Overlock 10 19
65	Highly transparent, bright green, sol–gel-derived monolithic silica-(Tb,Ce)PO4 glass-ceramic phosphors. RSC Advances, 2014, 4, 26692-26696.	3.6	10
66	Solubility and Diffusion Coefficient of Oxygen in Protic Ionic Liquids with Different Fluoroalkyl Chain Lengths. Electrochimica Acta, 2014, 132, 208-213.	5.2	17
67	Studies of Tin Alloy Electrode Materials Prepared by Mechanical Alloying. Electrochemistry, 2014, 82, 467-473.	1.4	3
68	Cosolvent-Free Sol–Gel Synthesis and Optical Characterization of Silica Glasses Containing LaF3 and (La,Er)F3 Nanocrystals. Bulletin of the Chemical Society of Japan, 2014, 87, 765-772.	3.2	5
69	Thiol-Containing Polysilsesquioxane Liquid and Photocurable Sulfur-Containing Transparent Organic–Inorganic Hybrid Monoliths Obtained via Cosolvent-Free Hydrolytic Polycondensation. Bulletin of the Chemical Society of Japan, 2013, 86, 880-883.	3.2	7
70	Hydrothermal Synthesis of Manganese Dioxide Nanoparticles as Cathode Material for Rechargeable Batteries. Electrochemistry, 2013, 81, 2-6.	1.4	9
71	Cosolvent-free sol–gel synthesis of rare-earth and aluminum codoped monolithic silica glasses. Journal of the Ceramic Society of Japan, 2013, 121, 299-302.	1.1	10
72	PHOSPHATE MATERIALS FOR RECHARGEABLE BATTERY APPLICATIONS. Phosphorus Research Bulletin, 2013, 28, 30-36.	0.6	2

#	Article	IF	CITATIONS
73	Synthesis of monolithic deep-ultraviolet-transparent polysilsesquioxane glasses from organotrimethoxysilane–water binary system. RSC Advances, 2012, 2, 8946.	3.6	7
74	PREPARATION OF Li _{1.5} Al _{0.5} Ge _{1.5} (PO _{4SOLID ELECTROLYTE BY SOL-GEL METHOD. Phosphorus Research Bulletin, 2011, 25, 61-63.}	gt) <sı< td=""><td>ıb&g0;3</su</td></sı<>	ıb& g0; 3</su
75	Fabrication of Li0.35La0.55TiO3 solid electrolyte with two-layered structure for all-solid-state Li battery by a colloidal crystal templating method. Journal of the Ceramic Society of Japan, 2011, 119, 189-193.	1.1	2
76	Electrochemical Property of Honeycomb Type All-Solid-State Li Battery at High Temperature. Electrochemistry, 2011, 79, 464-466.	1.4	3
77	Improved Performance of Hydrothermally Synthesized LiMnPO4 by Mg Doping. Electrochemistry, 2011, 79, 467-469.	1.4	9
78	Electrochemical Properties of Three Dimensionally Ordered Composite Electrode Between TiO2 and Li1.5Al0.5Ti1.5(PO4)3. Electrochemistry, 2011, 79, 865-868.	1.4	1
79	Sol-gel synthesis of fluorine-doped silica glasses with low SiOH concentrations. Journal of the Ceramic Society of Japan, 2011, 119, 393-396.	1.1	11
80	Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. Journal of Power Sources, 2011, 196, 7750-7754.	7.8	305
81	Fabrication of Lithium-ion Microarray Battery by Electrophoresis. Electrochemistry, 2010, 78, 273-275.	1.4	4
82	High-Rate Lithium Deintercalation from Lithiated Graphite Single-Particle Electrode. Journal of Physical Chemistry C, 2010, 114, 8646-8650.	3.1	80
83	ELECTROCHEMICAL PROPERIES OF HYDROTHERMALLY SYNTHESIZED LICoPO ₄ AS A HIGH VOLTAGE CATHODE MATERIAL FOR LITHIUM SECONDARY BATTERY. Phosphorus Research Bulletin, 2010, 24, 12-15.	0.6	12
84	Fabrication of Electrode With 3 Dimensionally Ordered Structure for All-Solid-State Battery. Materials Research Society Symposia Proceedings, 2010, 1266, 10601.	0.1	0
85	Fabrication of Three-Dimensional Battery Using Ceramic Electrolyte with Honeycomb Structure by Sol–Gel Process. Journal of the Electrochemical Society, 2010, 157, A493.	2.9	91
86	Compatibility of Li[sub 7]La[sub 3]Zr[sub 2]O[sub 12] Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode. Journal of the Electrochemical Society, 2010, 157, A1076.	2.9	319
87	NANOCOMPOSITE ELECTRODES CONSISTING OF 3DOM CARBON WITH BIMODAL POROUS STRUCTURE AND CONDUCTING POLYMERS FOR ELECTROCHEMICAL CAPACITORS. Functional Materials Letters, 2009, 02, 19-22.	1.2	2
88	Controlled Crystallization of Calcite Under Surface Electric Field Due to Polarized Hydroxyapatite Ceramics. Journal of the American Ceramic Society, 2009, 92, 1586-1591.	3.8	14
89	Electrochemical Characteristics of Porous Electrode Consisting of Spherical LiMn2O4 Particles. Electrochemistry, 2009, 77, 309-314.	1.4	1
90	Effect of carbon source on electrochemical performance of carbon coated LiMnPO4 cathode. Journal of the Ceramic Society of Japan, 2009, 117, 1225-1228.	1.1	37

#	Article	IF	CITATIONS
91	Hydrothermal synthesis of LiFePO4 as a cathode material for lithium batteries. Journal of Materials Science, 2008, 43, 2138-2142.	3.7	57
92	Three-dimensionally ordered composite electrode between LiMn2O4 and Li1.5Al0.5Ti1.5(PO4)3. lonics, 2008, 14, 173-177.	2.4	36
93	Three-dimensionally ordered macroporous polyimide composite membrane with controlled pore size for direct methanol fuel cells. Journal of Power Sources, 2008, 178, 596-602.	7.8	50
94	Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. Journal of Materials Chemistry, 2008, 18, 1674.	6.7	154
95	Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. Journal of Materials Chemistry, 2007, 17, 4803.	6.7	230
96	Creation and Optical Property of Microphotonic Crystals by Electrophoretic Deposition Method Using Micro-counter Electrode. Materials Research Society Symposia Proceedings, 2003, 797, 111.	0.1	1
97	Preparation of Li ₄ Ti ₅ O ₁₂ Thin Film Electrode with PVP Sol-Gel for a Rechargeable Lithium Microbattery. Hyomen Kagaku, 2003, 24, 423-428.	0.0	5
98	FABRICATION AND IN VITRO CHARACTERIZATION OF POROUS BIOACTIVE CERAMICS WITH HIGHLY CONTROLLED MICROSTRUCTURE. Phosphorus Research Bulletin, 2002, 13, 147-152.	0.6	2
99	Recovery of Phosphate from Steel Manufacture Slag by Sulfuric Acid Treatment. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1507-1511.	1.6	1
100	Preparation of Organic-Inorganic Composite Electrolyte Membrane for Direct Methanol Fuel Cell. Electrochemistry, 2002, 70, 934-936.	1.4	5
101	Fabrication of Membrane Electrode Assembly for Micro Fuel Cell by Using Electrophoretic Deposition Process. Electrochemistry, 2002, 70, 937-939.	1.4	4
102	Continuous production of LiCoO2fine crystals for lithium batteries by hydrothermal synthesis under supercritical condition. High Pressure Research, 2001, 20, 373-384.	1.2	38
103	The 199 Joint International Meeting (196th Meeting of the Electrochemical Society, 1999 Fall Meeting of) Tj ETQ	0q1_1_0.78	34314 rgBT
104	Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolutionâ€Đeposition Cycles. Journal of the Electrochemical Society, 1999, 146, 1633-1639.	2.9	161
105	PREPARATION AND IN VITRO TEST OF APATITE FILMS ONTO TITANIUM BY SPUTTERING FROM CALCIUM PHOSPHATE POWDER TARGETS. Phosphorus Research Bulletin, 1999, 10, 370-374.	0.6	0
106	COATING OF CaO-SiO ₂ AMORPHOUS POWDER WITH CALCIUM PHOSPHATE. Phosphorus Research Bulletin, 1999, 10, 313-316.	0.6	0
107	Preparation and Electrochemical Characterization of LiCoO ₂ Single Crystal Particles prepared by Super Critical Water Synthesis (SCWS). Materials Research Society Symposia Proceedings, 1999, 575, 59.	0.1	2
108	Quartz Crystal Microbalance Study for Lithium Deposition and Dissolution in Nonaqueous Electrolyte with HF. Electrochemistry, 1999, 67, 1264-1267.	1.4	4

#	Article	IF	CITATIONS
109	Chemical Reaction of Lithium Surface during Immersion in LiClO4 or LiPF6 /  DEC  Electrolyte. J the Electrochemical Society, 1997, 144, 1900-1906.	ournal of	110
110	Study of the Surface Composition of Highly Smooth Lithium Deposited in Various Carbonate Electrolytes Containing HF. Langmuir, 1997, 13, 3542-3549.	3.5	90
111	Artificial Control of Interfaces in Rechargeable Lithium Batteries Hyomen Kagaku, 1997, 18, 309-318.	0.0	0
112	Electrochemical Deposition of Very Smooth Lithium Using Nonaqueous Electrolytes Containing HF. Journal of the Electrochemical Society, 1996, 143, 2187-2197.	2.9	212
113	Electrochemical Oxidation Processes on Ni Electrodes in Propylene Carbonate Containing Various Electrolyte Salts. Journal of the Electrochemical Society, 1996, 143, 2548-2558.	2.9	39
114	Application of FeOCl Derivatives for a Secondary Lithium Battery: III . Electrochemical Reaction and Physical State of Reaction Product of with Aniline in Water. Journal of the Electrochemical Society, 1995, 142, 2126-2131.	2.9	5
115	Studies on Electrochemical Oxidation of Nonaqueous Electrolytes Using In Situ FTIR Spectroscopy: I . The Effect of Type of Electrode on Onâ€5et Potential for Electrochemical Oxidation of Propylene Carbonate Containing 1.0 mol dmâ°'3. Journal of the Electrochemical Society, 1995, 142, 1383-1389.	2.9	71
116	XPS Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing LiBF4. Journal of the Electrochemical Society, 1995, 142, 340-347.	2.9	233
117	Effects of the Solvent for the Electropolymerization of Aniline on Discharge and Charge Characteristics of Polyaniline. Journal of the Electrochemical Society, 1995, 142, 3309-3313.	2.9	22
118	Electrochemical Deposition of Uniform Lithium on an Ni Substrate in a Nonaqueous Electrolyte. Journal of the Electrochemical Society, 1994, 141, L108-L110.	2.9	95
119	Xâ€Ray Photoelectron Spectroscopic Analysis and Scanning Electron Microscopic Observation of the Lithium Surface Immersed in Nonaqueous Solvents. Journal of the Electrochemical Society, 1994, 141, 2379-2385.	2.9	121
120	Discharge and Charge Characteristics of Polyaniline Prepared by Electropolymerization of Aniline in Nonaqueous Solvent. Journal of the Electrochemical Society, 1993, 140, 629-633.	2.9	38
121	Microscopic Reaction Site Model for Cathodic Reduction of Lead Sulfate to Lead. Journal of the Electrochemical Society, 1992, 139, 345-351.	2.9	17
122	Synthesis of MoS2 Thin Film by Chemical Vapor Deposition Method and Discharge Characteristics as a Cathode of the Lithium Secondary Battery. Journal of the Electrochemical Society, 1992, 139, 2082-2087.	2.9	80
123	Dependence of Entropy Change of Single Electrodes on Partial Pressure in Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 1991, 138, 2165-2167.	2.9	24