Zhen Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2844966/publications.pdf

Version: 2024-02-01

430874 580821 1,183 25 25 18 citations h-index g-index papers 25 25 25 1188 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Large-scale sodiophilic/buffered alloy architecture enables deeply cyclable Na metal anodes. Chemical Engineering Journal, 2022, 433, 133270.	12.7	13
2	Constructing resilient solid electrolyte interphases on carbon nanofiber film for advanced potassium metal anodes. Carbon, 2022, 186, 141-149.	10.3	17
3	Unraveling the Rateâ€Dependent Stability of Metal Anodes and Its Implication in Designing Cycling Protocol. Advanced Functional Materials, 2022, 32, 2107584.	14.9	63
4	Stabilizing Microsized Sn Anodes for Na-Ion Batteries with Extended Ether Electrolyte Chemistry. ACS Applied Energy Materials, 2022, 5, 2252-2259.	5.1	7
5	Critical Roles of Mechanical Properties of Solid Electrolyte Interphase for Potassium Metal Anodes. Advanced Functional Materials, 2022, 32, .	14.9	31
6	Controllable synthesis of platinum–tin intermetallic nanoparticles with high electrocatalytic performance for ethanol oxidation. Inorganic Chemistry Frontiers, 2022, 9, 1143-1151.	6.0	5
7	Unlocking the Reversible Selenium Electrode for Nonâ€Aqueous and Aqueous Calciumâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	14.9	22
8	Elastomer–Alginate Interface for Highâ€Power and Highâ€Energy Zn Metal Anodes. Advanced Energy Materials, 2022, 12, .	19.5	51
9	A freestanding hydroxylated carbon nanotube film boosting the stability of Zn metal anodes. Materials Today Communications, 2022, 32, 103939.	1.9	4
10	Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation. Nature Communications, 2021, 12, 3083.	12.8	167
11	Realizing wide-temperature Zn metal anodes through concurrent interface stability regulation and solvation structure modulation. Energy Storage Materials, 2021, 42, 517-525.	18.0	47
12	Poly(vinylidene difluoride) coating on Cu current collector for high-performance Na metal anode. Energy Storage Materials, 2020, 24, 588-593.	18.0	48
13	Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases. Journal of Energy Chemistry, 2020, 45, 7-17.	12.9	74
14	Dendrite-Free lithium electrode enabled by graphene aerogels with gradient porosity. Energy Storage Materials, 2020, 33, 329-335.	18.0	28
15	Tailoring desolvation kinetics enables stable zinc metal anodes. Journal of Materials Chemistry A, 2020, 8, 19367-19374.	10.3	136
16	Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong-life sodium metal anodes. Journal of Materials Chemistry A, 2020, 8, 16232-16237.	10.3	43
17	Polymer–Inorganic Composite Protective Layer for Stable Na Metal Anodes. ACS Applied Energy Materials, 2020, 3, 2900-2906.	5.1	19
18	Hybrid Protective Layer for Stable Sodium Metal Anodes at High Utilization. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37693-37700.	8.0	51

ZHEN HOU

#	Article	IF	CITATION
19	Monodisperse tin nanoparticles and hollow tin oxide nanospheres as anode materials for high performance lithium ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 473-476.	6.0	14
20	Yolk–shell structured SnSe as a high-performance anode for Na-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 562-565.	6.0	48
21	Lithiophilic Ag Nanoparticle Layer on Cu Current Collector toward Stable Li Metal Anode. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8148-8154.	8.0	120
22	3D Printing of Hierarchical Graphene Lattice for Advanced Na Metal Anodes. ACS Applied Energy Materials, 2019, 2, 3869-3877.	5.1	40
23	SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. Chemical Engineering Journal, 2019, 370, 677-683.	12.7	77
24	Ni ₃ N Nanocrystals Decorated Reduced Graphene Oxide with High Ionic Conductivity for Stable Lithium Metal Anode. ACS Applied Energy Materials, 2019, 2, 2692-2698.	5.1	30
25	Thermally reduced graphene paper with fast Li ion diffusion for stable Li metal anode. Electrochimica Acta, 2019, 294, 413-422.	5.2	28