Anthony C Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2844959/publications.pdf

Version: 2024-02-01

51	1,791	23	276875 41 g-index
papers	citations	h-index	
52	52	52	2113
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Stress and the Microbiota–Gut–Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neuroscience and Therapeutics, 2016, 22, 102-117.	3.9	262
2	Activation of Colonic Mucosal 5-HT4 Receptors Accelerates Propulsive Motility and Inhibits Visceral Hypersensitivity. Gastroenterology, 2012, 142, 844-854.e4.	1.3	224
3	Gastrointestinal Physiology and Function. Handbook of Experimental Pharmacology, 2017, 239, 1-16.	1.8	120
4	Corticotropinâ€releasing factor 1 receptorâ€mediated mechanisms inhibit colonic hypersensitivity in rats. Neurogastroenterology and Motility, 2005, 17, 415-422.	3.0	107
5	Effects of serotonin transporter inhibition on gastrointestinal motility and colonic sensitivity in the mouse. Neurogastroenterology and Motility, 2006, 18, 464-471.	3.0	84
6	Mechanisms of Stress-induced Visceral Pain. Journal of Neurogastroenterology and Motility, 2018, 24, 7-18.	2.4	74
7	Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. American Journal of Physiology - Renal Physiology, 2015, 308, G885-G903.	3.4	68
8	Effects of Bifidobacterium infantis 35624 on Post-Inflammatory Visceral Hypersensitivity in the Rat. Digestive Diseases and Sciences, 2011, 56, 3179-3186.	2.3	64
9	Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Frontiers in Systems Neuroscience, 2017, 11, 86.	2.5	61
10	Corticotropin-releasing factor receptor 1-deficient mice show decreased anxiety and colonic sensitivity. Neurogastroenterology and Motility, 2007, 19, 754-760.	3.0	48
11	Importance of stress receptorâ€mediated mechanisms in the amygdala on visceral pain perception in an intrinsically anxious rat. Neurogastroenterology and Motility, 2012, 24, 479-486.	3.0	47
12	Attenuation by spinal cord stimulation of a nociceptive reflex generated by colorectal distention in a rat model. Autonomic Neuroscience: Basic and Clinical, 2003, 104, 17-24.	2.8	46
13	Long-term expression of corticotropin-releasing factor (CRF) in the paraventricular nucleus of the hypothalamus in response to an acute colonic inflammation. Brain Research, 2006, 1071, 91-96.	2.2	46
14	Knockdown of corticotropin-releasing factor in the central amygdala reverses persistent viscerosomatic hyperalgesia. Translational Psychiatry, 2015, 5, e517-e517.	4.8	46
15	Stress-Induced Pain: A Target for the Development of Novel Therapeutics. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 327-335.	2.5	44
16	NK1 receptor-mediated mechanisms regulate colonic hypersensitivity in the guinea pig. Pharmacology Biochemistry and Behavior, 2003, 74, 1005-1013.	2.9	43
17	Knockdown of steroid receptors in the central nucleus of the amygdala induces heightened pain behaviors in the rat. Neuropharmacology, 2015, 93, 116-123.	4.1	40
18	Spinal cord stimulation attenuates visceromotor reflexes in a rat model of post-inflammatory colonic hypersensitivity. Autonomic Neuroscience: Basic and Clinical, 2005, 122, 69-76.	2.8	35

#	Article	IF	CITATIONS
19	Brain Activation in Response to Visceral Stimulation in Rats with Amygdala Implants of Corticosterone: An fMRI Study. PLoS ONE, 2010, 5, e8573.	2.5	35
20	Role of estrogen and stress on the brain-gut axis. American Journal of Physiology - Renal Physiology, 2019, 317, G203-G209.	3.4	34
21	Exposure of the amygdala to elevated levels of corticosterone alters colonic motility in response to acute psychological stress. Neuropharmacology, 2010, 58, 1161-1167.	4.1	33
22	The microbiota-gut-brain axis: An emerging role for the epigenome. Experimental Biology and Medicine, 2020, 245, 138-145.	2.4	31
23	The Pharmacology of Visceral Pain. Advances in Pharmacology, 2016, 75, 273-301.	2.0	27
24	Critical evaluation of animal models of visceral pain for therapeutics development: A focus on irritable bowel syndrome. Neurogastroenterology and Motility, 2020, 32, e13776.	3.0	25
25	The Next 50 Years of Neuroscience. Journal of Neuroscience, 2020, 40, 101-106.	3.6	23
26	Critical Evaluation of Animal Models of Gastrointestinal Disorders. Handbook of Experimental Pharmacology, 2017, 239, 289-317.	1.8	18
27	Targeting epigenetic mechanisms for chronic visceral pain: A valid approach for the development of novel therapeutics. Neurogastroenterology and Motility, 2019, 31, e13500.	3.0	16
28	Effect of spinal cord stimulation in a rodent model of postâ€operative ileus. Neurogastroenterology and Motility, 2009, 21, 672.	3.0	15
29	5-HT2B receptors do not modulate sensitivity to colonic distension in rats with acute colorectal hypersensitivity. Neurogastroenterology and Motility, 2006, 18, 343-345.	3.0	14
30	Enteric RET inhibition attenuates gastrointestinal secretion and motility via cholinergic signaling in rat colonic mucosal preparations. Neurogastroenterology and Motility, 2019, 31, e13479.	3.0	11
31	Exploring the Potential of RET Kinase Inhibition for Irritable Bowel Syndrome: A Preclinical Investigation in Rodent Models of Colonic Hypersensitivity. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 299-307.	2.5	11
32	Visceral hypersensitivity induced by optogenetic activation of the amygdala in conscious rats. American Journal of Physiology - Renal Physiology, 2018, 314, G448-G457.	3.4	7
33	Inhibition of endothelial cell adhesion molecule expression improves colonic hyperalgaesia. Neurogastroenterology and Motility, 2009, 21, 189-196.	3.0	5
34	Stereotaxic Exposure of the Central Nucleus of the Amygdala to Corticosterone Increases Colonic Permeability and Reduces Nerve-Mediated Active Ion Transport in Rats. Frontiers in Neuroscience, 2018, 12, 543.	2.8	4
35	Enlightening the frontiers of neurogastroenterology through optogenetics. American Journal of Physiology - Renal Physiology, 2020, 319, G391-G399.	3.4	3
36	Central amygdala mechanisms regulating visceral pain. Psychoneuroendocrinology, 2015, 61, 8.	2.7	2

#	Article	IF	Citations
37	Epigenetics of Pain Management., 2016,, 827-841.		2
38	Gut and brain interactions. , 2020, , 17-30.		2
39	Evidence to Support The Non-Genomic Modulation of The HPA Axis. Journal of Steroids & Hormonal Science, 2012, 03, .	0.1	2
40	Probiotic bacteria normalize post inflammatory visceral hyperagesia in rats. Gastroenterology, 2003, 124, A476.	1.3	1
41	M1271 a Novel Gastric Invagination Procedure Produces Weight Loss in Rats. Gastroenterology, 2009, 136, A-386.	1.3	1
42	Optogenetic Activation of Central Amygdaloid Circuitry Induces Visceral Pain in Freely Moving Rats. Gastroenterology, 2017, 152, S729.	1.3	1
43	Stress and the Microbiota–Gut–Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. , 2016, 22, 102.		1
44	Increasein chlorotyrosine and nitrotyrosine-markers of inflammation mediated oxidative damage in animal models of inflammatory bowel disease. Gastroenterology, 2000, 118, A1122.	1.3	0
45	The acute and long term effects of colonic inflammation on supraspinal pathways in a rat model. Gastroenterology, 2001, 120, A726.	1.3	0
46	Spinal cord stimulation (SCS) reduces perception of a visceral stimulus induced by colorectal distention in rodents. Gastroenterology, 2003, 124, A611-A612.	1.3	0
47	T1839 Role of Steroid Receptor-Mediated Mechanisms in the Amygdala On Colonic Hypersensitivity in a High Anxiety Rat. Gastroenterology, 2008, 134, A-574.	1.3	0
48	T1662 Importance of Corticosteroid Receptors Within the Amygdala On Post-Inflammatory Colonic Hyperalgesia. Gastroenterology, 2009, 136, A-553.	1.3	0
49	Tu1789 Central Mechanisms of Stress-Induced Pain: Relevance of Amygdala-Cortical Connections. Gastroenterology, 2016, 150, S947.	1.3	0
50	Microbiota, the brain and epigenetics. , 2019, , 423-443.		0
51	Visceral Organ Crossâ€Sensitization in a Rodent Model of Early Life Stress. FASEB Journal, 2018, 32, 921.2.	0.5	0