Am Binley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2844615/publications.pdf

Version: 2024-02-01

226 15,729 59
papers citations h-index

232 232 232 9918 all docs docs citations times ranked citing authors

116

g-index

#	Article	IF	CITATIONS
1	Evaluating the joint use of GPR and ERT on mapping shallow subsurface features of karst critical zone in southwest China. Vadose Zone Journal, 2022, 21, e20172.	2.2	9
2	Hydrological properties predict the composition of microbial communities cycling methane and nitrogen in rivers. ISME Communications, 2022, 2, .	4.2	3
3	Soil moisture and electrical conductivity relationships under typical Loess Plateau land covers. Vadose Zone Journal, 2022, 21, .	2.2	6
4	Contrasting Biophysical Controls on Carbon Dioxide and Methane Outgassing From Streams. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	11
5	EMagPy: Open-source standalone software for processing, forward modeling and inversion of electromagnetic induction data. Computers and Geosciences, 2021, 146, 104561.	4.2	33
6	Efficient multiscale imaging of subsurface resistivity with uncertainty quantification using ensemble Kalman inversion. Geophysical Journal International, 2021, 225, 887-905.	2.4	16
7	Advancing hydrological process understanding from longâ€term resistivity monitoring systems. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1513.	6.5	20
8	Assessing the dynamics of soil salinity with time-lapse inversion of electromagnetic data guided by hydrological modelling. Hydrology and Earth System Sciences, 2021, 25, 1509-1527.	4.9	13
9	Spatial and temporal dynamics of nitrogen exchange in an upwelling reach of a groundwaterâ€fed river and potential response to perturbations changing rainfall patterns under ⟨scp⟩UK⟨/scp⟩ climate change scenarios. Hydrological Processes, 2021, 35, e14135.	2.6	3
10	A linked geomorphological and geophysical modelling methodology applied to an active landslide. Landslides, 2021, 18, 2689-2704.	5.4	19
11	Quantifying snow water equivalent using terrestrial ground penetrating radar and unmanned aerial vehicle photogrammetry. Hydrological Processes, 2021, 35, e14190.	2.6	5
12	The Application of Electromagnetic Induction Methods to Reveal the Hydrogeological Structure of a Riparian Wetland. Water Resources Research, 2021, 57, e2020WR029221.	4.2	13
13	A Comparative Study of Conceptual Model Complexity to Describe Water Flow and Nitrate Transport in Deep Unsaturated Loess. Water Resources Research, 2021, 57, e2020WR029250.	4.2	5
14	On negative induced polarization in frequency domain measurements. Geophysical Journal International, 2021, 225, 342-353.	2.4	7
15	Limitations and considerations for electrical resistivity and induced polarization imaging of riverbed sediments: Observations from laboratory, field, and synthetic experiments. Journal of Applied Geophysics, 2020, 183, 104173.	2.1	7
16	Accounting for heterogeneity in the Î,–΃ relationship: Application to wheat phenotyping using EMI. Vadose Zone Journal, 2020, 19, e20037.	2.2	11
17	Time″apse geophysical assessment of agricultural practices on soil moisture dynamics. Vadose Zone Journal, 2020, 19, e20080.	2.2	28
18	Timeâ€intensive geoelectrical monitoring under winter wheat. Near Surface Geophysics, 2020, 18, 413-425.	1.2	7

#	Article	IF	CITATIONS
19	Prediction of regionalâ€scale groundwater recharge and nitrate storage in the vadose zone: A comparison between a global model and a regional model. Hydrological Processes, 2020, 34, 3347-3357.	2.6	7
20	Borehole effect causing artefacts in crossâ€borehole electrical resistivity tomography: A hydraulic fracturing case study. Near Surface Geophysics, 2020, 18, 445-462.	1.2	8
21	Electrical resistivity monitoring of river–groundwater interactions in a Chalk river and neighbouring riparian zone. Near Surface Geophysics, 2020, 18, 385-398.	1.2	19
22	A multi-technique approach to determine temporal and spatial variability of groundwater-stream water exchange. Hydrological Processes, 2020, 34, 2612-2627.	2.6	2
23	Integrated hydrogeophysical modelling and data assimilation for geoelectrical leak detection. Journal of Contaminant Hydrology, 2020, 234, 103679.	3.3	29
24	Towards understanding timeâ€lapse electrical resistivity signals measured during contaminated snowmelt infiltration. Near Surface Geophysics, 2020, 18, 399-412.	1.2	5
25	Determining the Impact of Riparian Wetlands on Nutrient Cycling, Storage and Export in Permeable Agricultural Catchments. Water (Switzerland), 2020, 12, 167.	2.7	14
26	ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling. Computers and Geosciences, 2020, 137, 104423.	4.2	100
27	On the Field Estimation of Moisture Content Using Electrical Geophysics: The Impact of Petrophysical Model Uncertainty. Water Resources Research, 2019, 55, 7196-7211.	4.2	23
28	Evaluation of electrical resistivity tomography (ERT) for mapping the soil–rock interface in karstic environments. Environmental Earth Sciences, 2019, 78, 1.	2.7	40
29	Monitoring redox sensitive conditions at the groundwater interface using electrical resistivity and self-potential. Journal of Contaminant Hydrology, 2019, 226, 103517.	3.3	8
30	Capacity and Distribution of Water Stored in the Vadose Zone of the Chinese Loess Plateau. Vadose Zone Journal, 2019, 18, 180203.	2.2	9
31	Characterization of karst structures using quasi-3D electrical resistivity tomography. Environmental Earth Sciences, 2019, 78, 1.	2.7	24
32	Analysis of time-lapse data error in complex conductivity imaging to alleviate anthropogenic noise for site characterization. Geophysics, 2019, 84, B181-B193.	2.6	11
33	Effect of clay content and distribution on hydraulic and geophysical properties of synthetic sand-clay mixtures. Geophysics, 2019, 84, E239-E253.	2.6	13
34	Spatial variations in soil-water carrying capacity of three typical revegetation species on the Loess Plateau, China. Agriculture, Ecosystems and Environment, 2019, 273, 25-35.	5. 3	115
35	Laboratory spectral induced polarisation signatures associated with iron and manganese oxide dissolution because of anaerobic degradation. Journal of Contaminant Hydrology, 2019, 221, 1-10.	3.3	2
36	Estimation of the permeability of hydrocarbon reservoir samples using induced polarization and nuclear magnetic resonance methods. Geophysics, 2019, 84, MR73-MR84.	2.6	6

#	Article	IF	Citations
37	Use and application of CFC-11, CFC-12, CFC-113 and SF6 as environmental tracers of groundwater residence time: A review. Geoscience Frontiers, 2019, 10, 1643-1652.	8.4	34
38	Mineral N stock and nitrate accumulation in the 50 to 200 m profile on the Loess Plateau. Science of the Total Environment, 2018, 633, 999-1006.	8.0	67
39	Combined Geophysical Measurements Provide Evidence for Unfrozen Water in Permafrost in the Adventdalen Valley in Svalbard. Geophysical Research Letters, 2018, 45, 7606-7614.	4.0	34
40	Influence of tree species and forest land use on soil hydraulic conductivity and implications for surface runoff generation. Geoderma, 2018, 310, 120-127.	5.1	61
41	Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation. Journal of Hydrology, 2018, 556, 310-324.	5.4	46
42	Headwater gas exchange quantified from O ₂ mass balances at the reach scale. Limnology and Oceanography: Methods, 2018, 16, 696-709.	2.0	6
43	Stoichiometric constraints on the microbial processing of carbon with soil depth along a riparian hillslope. Biology and Fertility of Soils, 2018, 54, 949-963.	4.3	30
44	A Comparison of Groundâ€Penetrating Radar Earlyâ€Time Signal Approaches for Mapping Changes in Shallow Soil Water Content. Vadose Zone Journal, 2018, 17, 1-11.	2.2	9
45	Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area. Agricultural Water Management, 2018, 209, 178-187.	5.6	29
46	Characterizing the heterogeneity of karst critical zone and its hydrological function: An integrated approach. Hydrological Processes, 2018, 32, 2932-2946.	2.6	58
47	A Lumped Bubble Capacitance Model Controlled by Matrix Structure to Describe Layered Biogenic Gas Bubble Storage in Shallow Subtropical Peat. Water Resources Research, 2018, 54, 5487-5503.	4.2	1
48	Recharge and Nitrate Transport Through the Deep Vadose Zone of the Loess Plateau: A Regionalâ€6cale Model Investigation. Water Resources Research, 2018, 54, 4332-4346.	4.2	73
49	Methods to estimate changes in soil water for phenotyping root activity in the field. Plant and Soil, 2017, 415, 407-422.	3.7	72
50	Scenario Evaluator for Electrical Resistivity Survey Pre-modeling Tool. Ground Water, 2017, 55, 885-890.	1.3	4
51	Geophysical characterisation of the groundwater–surface water interface. Advances in Water Resources, 2017, 109, 302-319.	3.8	84
52	Root growth in field-grown winter wheat: Some effects of soil conditions, season and genotype. European Journal of Agronomy, 2017, 91, 74-83.	4.1	77
53	Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys. Journal of Applied Geophysics, 2017, 146, 103-119.	2.1	59
54	Reachâ€scale river metabolism across contrasting subâ€catchment geologies: Effect of light and hydrology. Limnology and Oceanography, 2017, 62, S381-S399.	3.1	22

#	Article	IF	CITATIONS
55	HP Volume to honor Keith Beven. Hydrological Processes, 2017, 31, 3762-3764.	2.6	O
56	Global patterns of nitrate storage in the vadose zone. Nature Communications, 2017, 8, 1416.	12.8	233
57	Hydrological controls on DOC â€⁻: â€⁻nitrate resource stoichiometry in a lowland, agricultural catchmer southern UK. Hydrology and Earth System Sciences, 2017, 21, 4785-4802.	nt, 4.9	25
58	Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology. Nature Geoscience, 2016, 9, 357-360.	12.9	76
59	Deep roots and soil structure. Plant, Cell and Environment, 2016, 39, 1662-1668.	5.7	115
60	Characterization of reactive transport by 3-D electrical resistivity tomography (ERT) under unsaturated conditions. Water Resources Research, 2016, 52, 8295-8316.	4.2	5
61	Geoelectrical monitoring of simulated subsurface leakage to support high-hazard nuclear decommissioning at the Sellafield Site, UK. Science of the Total Environment, 2016, 566-567, 350-359.	8.0	37
62	A laboratory study to estimate pore geometric parameters of sandstones using complex conductivity and nuclear magnetic resonance for permeability prediction. Water Resources Research, 2016, 52, 4321-4337.	4.2	31
63	The hydrogeologic information in cross-borehole complex conductivity data from an unconsolidated conglomeratic sedimentary aquifer. Geophysics, 2016, 81, E409-E421.	2.6	22
64	Integrated timeâ€apse geoelectrical imaging of wetland hydrological processes. Water Resources Research, 2016, 52, 1607-1625.	4.2	36
65	Diffusive equilibrium in thin films provides evidence of suppression of hyporheic exchange and largeâ€scale nitrate transformation in a groundwaterâ€fed river. Hydrological Processes, 2015, 29, 1385-1396.	2.6	9
66	Estimation of Recharge from Longâ€Term Monitoring of Saline Tracer Transport Using Electrical Resistivity Tomography. Vadose Zone Journal, 2015, 14, 1-13.	2,2	14
67	Temporal responses of groundwaterâ€surface water exchange to successive storm events. Water Resources Research, 2015, 51, 1112-1126.	4.2	57
68	Coupled and uncoupled hydrogeophysical inversions using ensemble <scp>K</scp> alman filter assimilation of <scp>ERT</scp> â€monitored tracer test data. Water Resources Research, 2015, 51, 3277-3291.	4.2	55
69	Predicting permeability from the characteristic relaxation time and intrinsic formation factor of complex conductivity spectra. Water Resources Research, 2015, 51, 6672-6700.	4.2	86
70	Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties. Water Resources Research, 2015, 51, 1264-1283.	4.2	33
71	Timeâ€lapse electrical resistivity imaging of solute transport in a karst conduit. Hydrological Processes, 2015, 29, 4968-4976.	2.6	17
72	The Use of Electromagnetic Induction to Monitor Changes in Soil Moisture Profiles beneath Different Wheat Genotypes. Soil Science Society of America Journal, 2015, 79, 459-466.	2.2	80

#	Article	IF	CITATIONS
73	The interplay between transport and reaction rates as controls on nitrate attenuation in permeable, streambed sediments. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1093-1109.	3.0	44
74	Fluvial response to Late Pleistocene and Holocene environmental change in a Thames chalkland headwater: the Lambourn of southern England. Proceedings of the Geologists Association, 2015, 126, 683-697.	1.1	15
75	Tools and Techniques: Electrical Methods. , 2015, , 233-259.		74
76	Self-potential monitoring of the enhanced biodegradation of an organic contaminant using a bioelectrochemical cell. The Leading Edge, 2015, 34, 198-202.	0.7	9
77	Permeability prediction based on induced polarization: Insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range. Geophysics, 2015, 80, D161-D173.	2.6	86
78	The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources Research, 2015, 51, 3837-3866.	4.2	479
79	An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data. Exploration Geophysics, 2015, 46, 223-235.	1.1	230
80	GLUE: 20 years on. Hydrological Processes, 2014, 28, 5897-5918.	2.6	239
81	Interpreting spatial patterns in redox and coupled water–nitrogen fluxes in the streambed of a gaining river reach. Biogeochemistry, 2014, 117, 491-509.	3.5	22
82	Electricalâ€hydraulic relationships observed for unconsolidated sediments in the presence of a cobble framework. Water Resources Research, 2014, 50, 5721-5742.	4.2	21
83	The effect of peat structure on the spatial distribution of biogenic gases within bogs. Hydrological Processes, 2014, 28, 5483-5494.	2.6	29
84	Fine-Scale in Situ Measurement of Riverbed Nitrate Production and Consumption in an Armored Permeable Riverbed. Environmental Science & Environmental	10.0	23
85	Impact of microforms on nitrate transport at the groundwater–surface water interface in gaining streams. Advances in Water Resources, 2014, 73, 185-197.	3.8	5
86	Influence of emergent vegetation on nitrate cycling in sediments of a groundwater-fed river. Biogeochemistry, 2014, 118, 121-134.	3.5	20
87	Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals. Environmental Science and Pollution Research, 2014, 21, 8914-8931.	5.3	55
88	Derivation of lowland riparian wetland deposit architecture using geophysical image analysis and interface detection. Water Resources Research, 2014, 50, 5886-5905.	4.2	41
89	Prospective modelling of 3D hyporheic exchange based on highâ€resolution topography and stream elevation. Hydrological Processes, 2014, 28, 2579-2594.	2.6	12
90	Control of river stage on the reactive chemistry of the hyporheic zone. Hydrological Processes, 2014, 28, 4766-4779.	2.6	26

#	Article	IF	Citations
91	Long-term Geoelectrical Monitoring to Support Nuclear Decommissioning at the Sellafield Site, UK. , 2014, , .		0
92	ON THE IMPORTANCE OF CONSIDERING CHANNEL MICROFORMS IN GROUNDWATER MODELS OF HYPORHEIC EXCHANGE. River Research and Applications, 2013, 29, 528-535.	1.7	27
93	Strategies for characterization of fractured rock using cross-borehole electrical tomography. The Leading Edge, 2013, 32, 784-790.	0.7	4
94	Laboratory SIP signatures associated with oxidation of disseminated metal sulfides. Journal of Contaminant Hydrology, 2013, 148, 25-38.	3.3	31
95	A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets. Journal of Applied Geophysics, 2013, 96, 38-54.	2.1	21
96	Revealing the spatial variability of water fluxes at the groundwaterâ€surface water interface. Water Resources Research, 2013, 49, 3978-3992.	4.2	63
97	Using geophysics to map areas of potential groundwater discharge into RingkÃ,bing Fjord, Denmark. The Leading Edge, 2013, 32, 792-796.	0.7	11
98	Resolving spectral information from time domain induced polarization data through 2-D inversion. Geophysical Journal International, 2013, 192, 631-646.	2.4	89
99	A novel grass hybrid to reduce flood generation in temperate regions. Scientific Reports, 2013, 3, 1683.	3.3	53
100	Markov-chain Monte Carlo estimation of distributed Debye relaxations in spectral induced polarization. Geophysics, 2012, 77, E159-E170.	2.6	25
101	Imaging and quantifying salt-tracer transport in a riparian groundwater system by means of 3D ERT monitoring. Geophysics, 2012, 77, B207-B218.	2.6	83
102	Characterization of the key pathways of dissimilatory nitrate reduction and their response to complex organic substrates in hyporheic sediments. Limnology and Oceanography, 2012, 57, 387-400.	3.1	47
103	2-D joint structural inversion of cross-hole electrical resistance and ground penetrating radar data. Journal of Applied Geophysics, 2012, 78, 52-67.	2.1	31
104	A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography: Comparison of time-lapse results. Journal of Applied Geophysics, 2012, 79, 6-16.	2.1	90
105	Do peatland microforms move through time? Examining the developmental history of a patterned peatland using groundâ€penetrating radar. Journal of Geophysical Research, 2012, 117, .	3.3	16
106	Hydrologic and geomorphic controls on hyporheic exchange during base flow recession in a headwater mountain stream. Water Resources Research, 2012, 48, .	4.2	66
107	Direct geoelectrical evidence of mass transfer at the laboratory scale. Water Resources Research, 2012, 48, .	4.2	34
108	In situ measurement of redox sensitive solutes at high spatial resolution in a riverbed using Diffusive Equilibrium in Thin Films (DET). Ecological Engineering, 2012, 49, 18-26.	3.6	15

#	Article	IF	CITATIONS
109	Lithologic imaging using complex conductivity: Lessons learned from the Hanford 300 Area. Geophysics, 2012, 77, E397-E409.	2.6	30
110	A Stochastic Analysis of Crossâ€Hole Groundâ€Penetrating Radar Zeroâ€Offset Profiles for Subsurface Characterization. Vadose Zone Journal, 2012, 11, vzj2011.0078.	2.2	6
111	An overview of the spectral induced polarization method for nearâ€surface applications. Near Surface Geophysics, 2012, 10, 453-468.	1.2	233
112	Comparing Plume Characteristics Inferred from Crossâ∈Borehole Geophysical Data. Vadose Zone Journal, 2012, 11, vzj2012.0031.	2.2	14
113	The effect of groundwater forcing on hyporheic exchange: Reply to comment on â€~Munz M, Krause S, Tecklenburg C, Binley A. Reducing monitoring gaps at the aquiferâ€iver interface by modelling groundwaterâ€surfacewater exchange flow patterns. <i>Hydrological Processes ⟨i⟩. DOI: 10.1002/hyp.8080'. Hydrological Processes. 2012. 26. 1589-1592.</i>	2.6	8
114	Layered and Laterally Constrained 2D Inversion of Time Domain Induced Polarization Data., 2012,,.		0
115	Characterization of peat structure using X-ray computed tomography and its control on the ebullition of biogenic gas bubbles. Journal of Geophysical Research, 2011, 116, .	3.3	31
116	Ebullition events monitored from northern peatlands using electrical imaging. Journal of Geophysical Research, 2011, 116, .	3.3	14
117	Estimating vadose zone hydraulic properties using ground penetrating radar: The impact of prior information. Water Resources Research, 2011, 47, .	4.2	21
118	Revealing the temporal dynamics of subsurface temperature in a wetland using time-lapse geophysics. Journal of Hydrology, 2011, 396, 258-266.	5.4	33
119	Reducing monitoring gaps at the aquifer–river interface by modelling groundwater–surface water exchange flow patterns. Hydrological Processes, 2011, 25, 3547-3562.	2.6	35
120	2D Time Domain Inversion of Induced Polarization Data. , 2011, , .		0
121	Stochastic Analysis of Cross-hole GPR Data for Subsurface Characterization., 2011,,.		0
122	Revealing Potential Flow Pathways within the Pow Catchment Using Geophysics - Initial Results and Conceptualisation. , $2011, , .$		0
123	Exploiting the temperature effects on low frequency electrical spectra of sandstone: A comparison of effective diffusion path lengths. Geophysics, 2010, 75, A43-A46.	2.6	49
124	Evaluating the effect of using artificial pore water on the quality of laboratory hydraulic conductivity measurements of peat. Hydrological Processes, 2010, 24, 2629-2640.	2.6	23
125	Anisotropic seismic inversion using a multigrid Monte Carlo approach. Geophysical Journal International, 2010, 183, 267-276.	2.4	7
126	Inâ€mine (tunnelâ€toâ€tunnel) electrical resistance tomography in South African platinum mines. Near Surface Geophysics, 2010, 8, 563-574.	1.2	13

#	Article	IF	Citations
127	Soil Management and Grass Species Effects on the Hydraulic Properties of Shrinking Soils. Soil Science Society of America Journal, 2010, 74, 753-761.	2.2	17
128	Geophysical characterization of riverbed hydrostratigraphy using electrical resistance tomography. Near Surface Geophysics, 2010, 8, 493-501.	1.2	22
129	Geostatistical inference using crosshole ground-penetrating radar. Geophysics, 2010, 75, J29-J41.	2.6	17
130	Structural joint inversion of timeâ€lapse crosshole ERT and GPR traveltime data. Geophysical Research Letters, 2010, 37, .	4.0	62
131	Textural controls on low-frequency electrical spectra of porous media. Geophysics, 2010, 75, WA113-WA123.	2.6	80
132	Estimation of vadose zone hydraulic properties from geophysical data using a Bayesian framework: effects of a correlated prior on posterior uncertainties. , 2010 , , .		1
133	Cross-gradients Joint Inversion of Time-lapse Crosshole ERT and GPR Data. , 2010, , .		2
134	Integrated Geophysical Characterization of a Hydrocarbon Contaminated Site., 2010,,.		2
135	Static and dynamic aspects of near surface characterization through physics-based integration of GPR, ERT, SIP and SP data in the time-lapse mode. , 2010, , .		0
136	Stochastic Inversion of Vadose Zone Properties: Impact of Parameter Correlation on Uncertainty Estimates. , 2010, , .		0
137	Imaging Brilliant Blue Stained Soil by Means of Electrical Resistivity Tomography. Vadose Zone Journal, 2009, 8, 963-975.	2.2	25
138	Noninvasive 3â€D Transport Characterization in a Sandy Soil Using ERT: 1. Investigating the Validity of ERTâ€derived Transport Parameters. Vadose Zone Journal, 2009, 8, 711-722.	2.2	40
139	Noninvasive 3â€D Transport Characterization in a Sandy Soil Using ERT: 2. Transport Process Inference. Vadose Zone Journal, 2009, 8, 723-734.	2.2	28
140	Controls on the spatial and temporal variability of 222Rn in riparian groundwater in a lowland Chalk catchment. Journal of Hydrology, 2009, 376, 58-69.	5.4	35
141	Nitrate concentration changes at the groundwaterâ€surface water interface of a small Cumbrian river. Hydrological Processes, 2009, 23, 2195-2211.	2.6	102
142	Spatioâ€ŧemporal variations of hyporheic flow in a riffleâ€stepâ€pool sequence. Hydrological Processes, 2009, 23, 2138-2149.	2.6	100
143	Quantifying the influence of static-like errors in least-squares-based inversion and sequential simulation of cross-borehole ground penetrating radar data. Journal of Applied Geophysics, 2009, 68, 71-84.	2.1	24
144	Critical Steps for the Continuing Advancement of Hydrogeophysics. Eos, 2009, 90, 200-200.	0.1	60

#	Article	IF	CITATIONS
145	Advancing processâ€based watershed hydrological research using nearâ€surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrological Processes, 2008, 22, 3604-3635.	2.6	228
146	Xâ€ray computed tomography of peat soils: measuring gas content and peat structure. Hydrological Processes, 2008, 22, 4827-4837.	2.6	41
147	Three-dimensional effects causing artifacts in two-dimensional, cross-borehole, electrical imaging. Journal of Hydrology, 2008, 359, 59-70.	5.4	60
148	Ground Penetrating Radar in Hydrogeophysics. Vadose Zone Journal, 2008, 7, 137-139.	2.2	34
149	Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3â€D ERT and TDR. Water Resources Research, 2008, 44, .	4.2	133
150	Monitoring Unsaturated Flow and Transport Using Crossâ€Borehole Geophysical Methods. Vadose Zone Journal, 2008, 7, 227-237.	2.2	112
151	Ecohydrologically important subsurface structures in peatlands revealed by groundâ€penetrating radar and complex conductivity surveys. Journal of Geophysical Research, 2008, 113, .	3.3	55
152	Electrical resistivity imaging of the architecture of substream sediments. Water Resources Research, 2008, 44, .	4.2	81
153	Identifying Unsaturated Hydraulic Parameters Using an Integrated Data Fusion Approach on Crossâ€Borehole Geophysical Data. Vadose Zone Journal, 2008, 7, 238-248.	2.2	96
154	Temporal and spatial variability of groundwater–surface water fluxes: Development and application of an analytical method using temperature time series. Journal of Hydrology, 2007, 336, 1-16.	5.4	456
155	Radon in Chalk streams: Spatial and temporal variation of groundwater sources in the Pang and Lambourn catchments, UK. Journal of Hydrology, 2007, 339, 172-182.	5.4	70
156	Variability of dissolved CO ₂ in the Pang and Lambourn Chalk rivers. Hydrology and Earth System Sciences, 2007, 11, 328-339.	4.9	7
157	Characterising groundwater-dominated lowland catchments: the UK Lowland Catchment Research Programme (LOCAR). Hydrology and Earth System Sciences, 2007, 11, 108-124.	4.9	38
158	Genetically modified hydrographs: what can grass genetics do for temperate catchment hydrology?. Hydrological Processes, 2007, 21, 2217-2221.	2.6	24
159	Electrical resistivity imaging of conductive plume dilution in fractured rock. Hydrogeology Journal, 2007, 15, 877-890.	2.1	28
160	Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resources Research, 2006, 42, .	4.2	270
161	Tidal influence on behaviour of a coastal aquifer adjacent to a low-relief estuary. Journal of Hydrology, 2006, 327, 110-127.	5.4	131
162	Within-river nutrient processing in Chalk streams: The Pang and Lambourn, UK. Journal of Hydrology, 2006, 330, 101-125.	5.4	70

#	Article	IF	CITATIONS
163	Streamflow generation in the Pang and Lambourn catchments, Berkshire, UK. Journal of Hydrology, 2006, 330, 71-83.	5.4	29
164	Synthetic and field-based electrical imaging of a zerovalent iron barrier: Implications for monitoring long-term barrier performance. Geophysics, 2006, 71, B129-B137.	2.6	55
165	A saline trace test monitored via time-lapse surface electrical resistivity tomography. Journal of Applied Geophysics, 2006, 59, 244-259.	2.1	192
166	Flow and transport in the unsaturated Sherwood Sandstone: characterization using cross-borehole geophysical methods. Geological Society Special Publication, 2006, 263, 219-231.	1.3	25
167	APPLIED HYDROGEOPHYSICS., 2006, , 1-8.		7
168	ENGINEERED BARRIERS FOR POLLUTANT CONTAINMENT AND REMEDIATION., 2006,, 293-317.		7
169	UNSATURATED ZONE PROCESSES. , 2006, , 75-116.		13
170	SOLUTE TRANSPORT PROCESSES. , 2006, , 117-159.		11
171	COLD REGIONS HYDROGEOPHYSICS: PHYSICAL CHARACTERISATION AND MONITORING. , 2006, , 195-232.		8
172	Geophysical Characterisation of the Riparian Zone in Groundwater Fed Catchments., 2006,,.		1
173	Modeling unsaturated flow in a layered formation under quasi-steady state conditions using geophysical data constraints. Advances in Water Resources, 2005, 28, 467-477.	3.8	70
174	DC Resistivity and Induced Polarization Methods. , 2005, , 129-156.		317
175	Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone. Water Resources Research, 2005, 41, .	4.2	265
176	17. Electrical Resistance Tomographyâ€"Theory and Practice. , 2005, , 525-550.		38
177	Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations. Journal of Geophysical Research, 2005, 110, .	3.3	256
178	Electrical properties of partially saturated sandstones: Novel computational approach with hydrogeophysical applications. Water Resources Research, 2005, 41, .	4.2	29
179	Hydrogeophysical Case Studies in the Vadose Zone. Water Science and Technology Library, 2005, , 413-440.	0.3	18
180	Hydrogeophysical Methods at the Laboratory Scale. , 2005, , 441-463.		9

#	Article	IF	Citations
181	Hydrogeophysics: An Introduction from the Guest Editors. Vadose Zone Journal, 2004, 3, 1060-1062.	2.2	10
182	Crosshole IP imaging for engineering and environmental applications. Geophysics, 2004, 69, 97-107.	2.6	194
183	Anisotropic resistivity tomography. Geophysical Journal International, 2004, 158, 409-425.	2.4	48
184	A comparison of cross-hole electrical and seismic data in fractured rock. Geophysical Prospecting, 2004, 52, 109-121.	1.9	23
185	Electrical resistance tomography. The Leading Edge, 2004, 23, 438-442.	0.7	135
186	Borehole cylindrical noise during hole–surface and hole–hole resistivity measurements. Journal of Hydrology, 2004, 289, 78-94.	5.4	17
187	Snowmelt infiltration: monitoring temporal and spatial variability using time-lapse electrical resistivity. Journal of Hydrology, 2004, 297, 174-186.	5.4	105
188	Remote Monitoring of Leaks in Storage Tanks using Electrical Resistance Tomography: Application at the Hanford Site. Journal of Environmental and Engineering Geophysics, 2004, 9, 11-24.	0.5	39
189	CHARACTERIZATION OF HETEROGENEITY IN UNSATURATED SANDSTONE USING BOREHOLE LOGS AND CROSS-BOREHOLE TOMOGRAPHY. , 2004, , 129-138.		12
190	Vadose Zone Flow Model Uncertainty as Conditioned on Geophysical Data. Ground Water, 2003, 41, 119-127.	1.3	71
191	Evaluation of permeable reactive barrier (PRB) integrity using electrical imaging methods. Geophysics, 2003, 68, 911-921.	2.6	54
192	The Performance of Electrical Methods for Assessing the Integrity of Geomembrane Liners in Landfill Caps and Waste Storage Ponds. Journal of Environmental and Engineering Geophysics, 2003, 8, 227-237.	0.5	14
193	Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging. Journal of Hydrology, 2002, 267, 147-159.	5.4	332
194	Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles. Journal of Hydrology, 2002, 267, 160-172.	5.4	172
195	Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography. Journal of Hydrology, 2002, 267, 273-284.	5.4	84
196	A 3D ERT study of solute transport in a large experimental tank. Journal of Applied Geophysics, 2002, 49, 211-229.	2.1	146
197	High-resolution characterization of vadose zone dynamics using cross-borehole radar. Water Resources Research, 2001, 37, 2639-2652.	4.2	215
198	Complex resistivity tomography for environmental applications. Chemical Engineering Journal, 2000, 77, 11-18.	12.7	144

#	Article	IF	Citations
199	Cross-hole electrical imaging of a controlled saline tracer injection. Journal of Applied Geophysics, 2000, 44, 85-102.	2.1	328
200	Laboratory Scale Tests of Electrical Impedance Tomography. , 1999, , .		0
201	Electrical Impedance Tomography of Known Targets. Journal of Environmental and Engineering Geophysics, 1999, 4, 11-26.	0.5	19
202	Resistivity imaging of soil during electrokinetic transport. Engineering Geology, 1999, 53, 205-215.	6.3	27
203	Characterizing solute transport in undisturbed soil cores using electrical and X-ray tomographic methods., 1999, 13, 211-221.		34
204	Geophysical investigation of unsaturated zone transport in the Chalk in Yorkshire. Quarterly Journal of Engineering Geology and Hydrogeology, 1999, 32, 185-198.	1.4	17
205	Inter-borehole electrical resistivity imaging of englacial drainage. Journal of Glaciology, 1998, 44, 429-435.	2.2	19
206	Inter-borehole electrical resistivity imaging of englacial drainage. Journal of Glaciology, 1998, 44, 429-435.	2.2	18
207	Modelling uncertainty in estimates of recharge to a shallow coastal aquifer. Hydrological Sciences Journal, 1997, 42, 155-168.	2.6	6
208	Electrokinetic Transport in Natural Soil Cores. Studies in Environmental Science, 1997, , 689-698.	0.0	0
209	Detecting Leaks from Environmental Barriers Using Electrical Current Imaging. Journal of Environmental and Engineering Geophysics, 1997, 2, 11-19.	0.5	30
210	Application of complex resistivity tomography to field data from a kerosene-contaminated site. , 1997, , cp-95-00039.		8
211	Electrical Imaging of Saline Tracer Migration for the Investigation of Unsaturated Zone Transport Mechanisms. Hydrology and Earth System Sciences, 1997, 1, 291-302.	4.9	44
212	Electrical Imaging of Fractures Using Ground-Water Salinity Change. Ground Water, 1997, 35, 436-442.	1.3	73
213	Flow pathways in porous media: electrical resistance tomography and dye staining image verification. Measurement Science and Technology, 1996, 7, 384-390.	2.6	70
214	Examination of Solute Transport in an Undisturbed Soil Column Using Electrical Resistance Tomography. Water Resources Research, 1996, 32, 763-769.	4.2	159
215	Finite element based three-dimensional forward and inverse solvers for electrical impedance tomography. , 1996, , .		2
216	Detection of Leaks in Underground Storage Tanks Using Electrical Resistance Methods. Journal of Environmental and Engineering Geophysics, 1996, 1, 189-203.	0.5	132

#	Article	IF	CITATIONS
217	ERT monitoring of environmental remediation processes. Measurement Science and Technology, 1996, 7, 375-383.	2.6	110
218	Tank Leak Detection Using Electrical Resistance Methods., 1996,,.		2
219	MIDA, a distributed hydrological model: Its behavior under some different parameter and data discretization conditions. Physics and Chemistry of the Earth, 1995, 20, 403-414.	0.3	1
220	Preconditioning finite element subsurface flow solutions on distributed memory parallel computers. Advances in Water Resources, 1993, 16, 191-202.	3.8	1
221	The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 1992, 6, 279-298.	2.6	3,485
222	Three-dimensional modelling of hillslope hydrology. Hydrological Processes, 1992, 6, 347-359.	2.6	30
223	Changing responses in hydrology: Assessing the uncertainty in physically based model predictions. Water Resources Research, 1991, 27, 1253-1261.	4.2	90
224	A physically based model of heterogeneous hillslopes: 1. Runoff production. Water Resources Research, 1989, 25, 1219-1226.	4.2	105
225	A physically based model of heterogeneous hillslopes: 2. Effective hydraulic conductivities. Water Resources Research, 1989, 25, 1227-1233.	4.2	120
226	Supercomputer Simulations of Heterogeneous Hillslopes. Developments in Water Science, 1988, , 185-190.	0.1	0