Yiqiang Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2843002/publications.pdf

Version: 2024-02-01

201674 276875 2,460 42 27 41 h-index citations g-index papers 42 42 42 3355 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Surface Electronic Structure Modulation of Cobalt Nitride Nanowire Arrays via Selenium Deposition for Efficient Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .	14.9	43
2	Encapsulated ruthenium nanoparticles activated few-layer carbon frameworks as high robust oxygen evolution electrocatalysts in acidic media. Journal of Colloid and Interface Science, 2022, 612, 488-495.	9.4	10
3	Ultrathin covalent and cuprophilic interaction-assembled copper–sulfur monolayer in organic metal chalcogenide for oriented photoconductivity. Chemical Communications, 2022, 58, 2858-2861.	4.1	7
4	Nitrogen-doped carbon encapsulating a RuCo heterostructure for enhanced electrocatalytic overall water splitting. CrystEngComm, 2022, 24, 4208-4214.	2.6	1
5	Ru Colloidosome Catalysts for the Hydrogen Oxidation Reaction in Alkaline Media. Journal of the American Chemical Society, 2022, 144, 11138-11147.	13.7	47
6	Morphology and electronic modulation of composite nanosheets for electrocatalytic oxygen evolution through partial and <i>in situ</i> transformation of NiFe-LDH. CrystEngComm, 2021, 23, 1572-1577.	2.6	3
7	Nitrogenâ€Doped Cobalt Diselenide with Cubic Phase Maintained for Enhanced Alkaline Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 21575-21582.	13.8	94
8	Nitrogenâ€Doped Cobalt Diselenide with Cubic Phase Maintained for Enhanced Alkaline Hydrogen Evolution. Angewandte Chemie, 2021, 133, 21745-21752.	2.0	14
9	Photoinduced defect engineering: enhanced photocatalytic performance of 3D BiOCl nanoclusters with abundant oxygen vacancies. CrystEngComm, 2021, 23, 1305-1311.	2.6	20
10	Porous CoSe ₂ @N-doped carbon nanowires: an ultra-high stable and large-current-density oxygen evolution electrocatalyst. Chemical Communications, 2021, 57, 1774-1777.	4.1	27
11	A universal route with fine kinetic control to a family of penta-twinned gold nanocrystals. Chemical Science, 2021, 12, 12631-12639.	7.4	15
12	PtPdAg Hollow Nanodendrites: Templateâ€Free Synthesis and High Electrocatalytic Activity for Methanol Oxidation Reaction. Small Methods, 2020, 4, 1900709.	8.6	44
13	Lattice distortion in hybrid NiTe2/Ni(OH)2 nanosheets as efficient synergistic electrocatalyst for water and urea oxidation. Journal of Power Sources, 2020, 449, 227585.	7.8	40
14	Design, Synthesis, and Photocatalytic Application of Moisture-Stable Hybrid Lead-Free Perovskite. ACS Applied Materials & Design, Synthesis, and Photocatalytic Application of Moisture-Stable Hybrid Lead-Free Perovskite. ACS Applied Materials & Design, Synthesis, and Photocatalytic Application of Moisture-Stable Hybrid Lead-Free Perovskite. ACS Applied Materials & Design, Synthesis, and Photocatalytic Application of Moisture-Stable Hybrid Lead-Free Perovskite. ACS Applied Materials & Design, Synthesis, and Photocatalytic Application of Moisture-Stable Hybrid Lead-Free Perovskite. ACS Applied Materials & Design & Desig	8.0	36
15	Hierarchical Z-scheme Fe ₂ O ₃ @ZnIn ₂ S ₄ core–shell heterostructures with enhanced adsorption capacity enabling significantly improved photocatalytic CO ₂ reduction. CrystEngComm, 2020, 22, 8221-8227.	2.6	15
16	Fluorine-Induced Dual Defects in Cobalt Phosphide Nanosheets Enhance Hydrogen Evolution Reaction Activity., 2020, 2, 736-743.		81
17	Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. Journal of Materials Chemistry A, 2020, 8, 13415-13436.	10.3	124
18	Strongly coupled dual zerovalent nonmetal doped nickel phosphide Nanoparticles/N, B-graphene hybrid for pH-Universal hydrogen evolution catalysis. Applied Catalysis B: Environmental, 2020, 278, 119284.	20.2	46

#	Article	IF	CITATIONS
19	Hollow FeP/Fe ₃ O ₄ Hybrid Nanoparticles on Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12783-12792.	8.0	41
20	Engineering of the dâ€Band Center of Perovskite Cobaltite for Enhanced Electrocatalytic Oxygen Evolution. ChemSusChem, 2020, 13, 2671-2676.	6.8	39
21	Dynamically Tunable Plasmonic Band for Reversible Colorimetric Sensors and Surface-Enhanced Raman Scattering Effect with Good Sensitivity and Stability. ACS Applied Materials & Interfaces, 2020, 12, 7494-7503.	8.0	22
22	Poly(sodium 4â€styrenesulfonate) Assisted Roomâ€Temperature Synthesis for the Mass Production of Bismuth Oxychloride Ultrathin Nanoplates with Enhanced Photocatalytic Activity. ChemPlusChem, 2019, 84, 828-837.	2.8	10
23	Hierarchical hetero-Ni ₃ Se ₄ @NiFe LDH micro/nanosheets as efficient bifunctional electrocatalysts with superior stability for overall water splitting. Nanoscale Horizons, 2019, 4, 1132-1138.	8.0	100
24	Hybrid Copper Iodide Cluster-Based Pellet Sensor for Highly Selective Optical Detection of o-Nitrophenol and Tetracycline Hydrochloride in Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2019, 7, 18863-18873.	6.7	41
25	Periodic Porous Alloyed Au–Ag Nanosphere Arrays and Their Highly Sensitive SERS Performance with Good Reproducibility and High Density of Hotspots. ACS Applied Materials & Density of Hotspots. ACS Applied Materials & Density Office (10, 10, 10, 10), 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	8.0	138
26	Yin-Yang Harmony: Metal and Nonmetal Dual-Doping Boosts Electrocatalytic Activity for Alkaline Hydrogen Evolution. ACS Energy Letters, 2018, 3, 2750-2756.	17.4	154
27	Large-Scale Synthesis of Co/CoO _{<i>x</i>} Encapsulated in Nitrogen-, Oxygen-, and Sulfur-Tridoped Three-Dimensional Porous Carbon as Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 6250-6259.	5.1	15
28	Ni _{0.33} Co _{0.67} MoS ₄ nanosheets as a bifunctional electrolytic water catalyst for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 19555-19562.	10.3	50
29	Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity. Journal of Materials Chemistry A, 2018, 6, 13735-13742.	10.3	32
30	Cu-Doped CoP Nanorod Arrays: Efficient and Durable Hydrogen Evolution Reaction Electrocatalysts at All pH Values. ACS Applied Energy Materials, 2018, 1, 3835-3842.	5.1	58
31	Strong Electronic Interaction in Dualâ€Cationâ€Incorporated NiSe ₂ Nanosheets with Lattice Distortion for Highly Efficient Overall Water Splitting. Advanced Materials, 2018, 30, e1802121.	21.0	361
32	Bifunctional Hybrid Ni/Ni ₂ P Nanoparticles Encapsulated by Graphitic Carbon Supported with N, S Modified 3D Carbon Framework for Highly Efficient Overall Water Splitting. Advanced Materials Interfaces, 2018, 5, 1800473.	3.7	40
33	Hierarchical micro/nanostructured C doped Co/Co ₃ O ₄ hollow spheres derived from PS@Co(OH) ₂ for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 11163-11170.	10.3	61
34	Surface enhanced Raman scattering properties of dynamically tunable nanogaps between Au nanoparticles self-assembled on hydrogel microspheres controlled by pH. Journal of Colloid and Interface Science, 2017, 505, 467-475.	9.4	23
35	Direct selenylation of mixed Ni/Fe metal-organic frameworks to NiFe-Se/C nanorods for overall water splitting. Journal of Power Sources, 2017, 366, 193-199.	7.8	72
36	Controlled synthesis of sponge-like porous Au–Ag alloy nanocubes for surface-enhanced Raman scattering properties. Journal of Materials Chemistry C, 2017, 5, 11039-11045.	5 . 5	45

#	ARTICLE	IF	CITATION
37	Rapid and Efficient Self-Assembly of Au@ZnO Core–Shell Nanoparticle Arrays with an Enhanced and Tunable Plasmonic Absorption for Photoelectrochemical Hydrogen Generation. ACS Applied Materials & amp; Interfaces, 2017, 9, 31897-31906.	8.0	53
38	Mo doped Ni ₂ P nanowire arrays: an efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values. Nanoscale, 2017, 9, 16674-16679.	5 . 6	179
39	Mn doped porous cobalt nitride nanowires with high activity for water oxidation under both alkaline and neutral conditions. Chemical Communications, 2017, 53, 13237-13240.	4.1	53
40	Periodic nanostructured Au arrays on an Si electrode for high-performance electrochemical detection of hydrogen peroxide without an enzyme. Journal of Materials Chemistry C, 2016, 4, 9864-9871.	5 . 5	21
41	Complete Au@ZnO core–shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis. Nanoscale, 2016, 8, 10774-10782.	5. 6	94
42	One-Pot Controllable Synthesis of Au@Ag Heterogeneous Nanorods with Highly Tunable Plasmonic Absorption. Chemistry of Materials, 2013, 25, 2580-2590.	6.7	91