Barbara Hammer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2842999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reservoir Memory Machines as Neural Computers. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 2575-2585.	11.3	1
2	Interpretable Locally Adaptive Nearest Neighbors. Neurocomputing, 2022, 470, 344-351.	5.9	2
3	Intuitiveness in Active Teaching. IEEE Transactions on Human-Machine Systems, 2022, 52, 458-467.	3.5	1
4	Suitability ofÂDifferent Metric Choices forÂConcept Drift Detection. Lecture Notes in Computer Science, 2022, , 157-170.	1.3	4
5	Keep Your Friends Close and Your Counterfactuals Closer: Improved Learning From Closest Rather Than Plausible Counterfactual Explanations in an Abstract Setting. , 2022, , .		6
6	Investigating intensity and transversal drift in hyperspectral imaging data. Neurocomputing, 2022, 505, 68-79.	5.9	1
7	Agnostic Explanation of Model Change based on Feature Importance. KI - Kunstliche Intelligenz, 2022, 36, 211-224.	3.2	5
8	Estimating the Electrical Power Output of Industrial Devices with End-to-End Time-Series Classification in the Presence of Label Noise. Lecture Notes in Computer Science, 2021, , 469-484.	1.3	7
9	Efficient Reject Options for Particle Filter Object Tracking in Medical Applications. Sensors, 2021, 21, 2114.	3.8	2
10	Towards an automatic analysis of CHO-K1 suspension growth in microfluidic single-cell cultivation. Bioinformatics, 2021, 37, 3632-3639.	4.1	6
11	Reservoir stack machines. Neurocomputing, 2021, , .	5.9	0
12	Efficient computation of contrastive explanations. , 2021, , .		1
13	Efficient computation of counterfactual explanations and counterfactual metrics of prototype-based classifiers. Neurocomputing, 2021, 470, 304-304.	5.9	6
14	Decentralized control and local information for robust and adaptive decentralized Deep Reinforcement Learning. Neural Networks, 2021, 144, 699-725.	5.9	15
15	Concept Drift Segmentation via Kolmogorov-Trees. , 2021, , .		3
16	AutoML Technologies for the Identification of Sparse Models. Lecture Notes in Computer Science, 2021, , 65-75.	1.3	0
17	Task-Sensitive Concept Drift Detector with Constraint Embedding. , 2021, , .		5

A Shape-Based Method for Concept Drift Detection and Signal Denoising. , 2021, , .

#	Article	IF	CITATIONS
19	Fast Non-Parametric Conditional Density Estimation using Moment Trees. , 2021, , .		2
20	Online Learning on Non-Stationary Data Streams for Image Recognition using Deep Embeddings. , 2021, ,		0
21	Time integration and reject options for probabilistic output of pairwise LVQ. Neural Computing and Applications, 2020, 32, 18009-18022.	5.6	1
22	Feature relevance determination for ordinal regression in the context of feature redundancies and privileged information. Neurocomputing, 2020, 416, 266-279.	5.9	4
23	Prototype-Based Classifiers in the Presence of Concept Drift: A Modelling Framework. Advances in Intelligent Systems and Computing, 2020, , 210-221.	0.6	1
24	Balanced SAM-kNN: Online Learning with Heterogeneous Drift and Imbalanced Data. Lecture Notes in Computer Science, 2020, , 850-862.	1.3	6
25	Personalized Online Learning of Whole-Body Motion Classes using Multiple Inertial Measurement Units. , 2019, , .		7
26	On the Identification of Decision Boundaries for Anomaly Detection in CPPS. , 2019, , .		3
27	Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 956-962.	4.9	39
28	Differential privacy for learning vector quantization. Neurocomputing, 2019, 342, 125-136.	5.9	9
29	Large-Margin Multiple Kernel Learning for Discriminative Features Selection and Representation Learning. , 2019, , .		3
30	FRI-Feature Relevance Intervals for Interpretable and Interactive Data Exploration. , 2019, , .		1
31	Recovering Localized Adversarial Attacks. Lecture Notes in Computer Science, 2019, , 302-311.	1.3	2
32	Interpretable Multiple-Kernel Prototype Learning for Discriminative Representation and Feature Selection. , 2019, , .		1
33	flowLearn: fast and precise identification and quality checking of cell populations in flow cytometry. Bioinformatics, 2018, 34, 2245-2253.	4.1	37
34	Expectation maximization transfer learning and its application for bionic hand prostheses. Neurocomputing, 2018, 298, 122-133.	5.9	21
35	Automated Design of Machine Learning and Search Algorithms [Guest Editorial]. IEEE Computational Intelligence Magazine, 2018, 13, 16-17.	3.2	11
36	Interpretation of linear classifiers by means of feature relevance bounds. Neurocomputing, 2018, 298, 69-79.	5.9	7

#	Article	IF	CITATIONS
37	Incremental on-line learning: A review and comparison of state of the art algorithms. Neurocomputing, 2018, 275, 1261-1274.	5.9	234
38	Tackling heterogeneous concept drift with the Self-Adjusting Memory (SAM). Knowledge and Information Systems, 2018, 54, 171-201.	3.2	31
39	Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces. Neural Processing Letters, 2018, 48, 669-689.	3.2	7
40	Statistical Mechanics of On-Line Learning Under Concept Drift. Entropy, 2018, 20, 775.	2.2	15
41	Skill Memories for Parameterized Dynamic Action Primitives on the Pneumatically Driven Humanoid Robot Child Affetto. , 2018, , .		2
42	Inferring Temporal Structure from Predictability in Bumblebee Learning Flight. Lecture Notes in Computer Science, 2018, , 508-519.	1.3	1
43	A Geometric Approach to Clustering Based Anomaly Detection for Industrial Applications. , 2018, , .		3
44	Enhancing Very Fast Decision Trees with Local Split-Time Predictions. , 2018, , .		4
45	Confident Kernel Sparse Coding and Dictionary Learning. , 2018, , .		4
46	Non-negative Local Sparse Coding for Subspace Clustering. Lecture Notes in Computer Science, 2018, , 137-150.	1.3	2
47	Generation of Adversarial Examples to Prevent Misclassification of Deep Neural Network based Condition Monitoring Systems for Cyber-Physical Production Systems. , 2018, , .		8
48	Classification of motor errors to provide real-time feedback for sports coaching in virtual reality — A case study in squats and Tai Chi pushes. Computers and Graphics, 2018, 76, 47-59.	2.5	24
49	Interpretable machine learning with reject option. Automatisierungstechnik, 2018, 66, 283-290.	0.8	11
50	Mitigating Concept Drift via Rejection. Lecture Notes in Computer Science, 2018, , 456-467.	1.3	9
51	Maschinelles Lernen in technischen Systemen. Intelligente Technische Systeme, Lol^sungen Aus Dem Spitzencluster It's OWL, 2018, , 73-118.	0.4	2
52	Efficient kernelisation of discriminative dimensionality reduction. Neurocomputing, 2017, 268, 34-41.	5.9	3
53	Label-noise-tolerant classification for streaming data. , 2017, , .		2
54	Transfer Learning for Rapid Re-calibration of a Myoelectric Prosthesis After Electrode Shift. Biosystems and Biorobotics, 2017, , 153-157.	0.3	24

#	Article	IF	CITATIONS
55	Probabilistic extension and reject options for pairwise LVQ. , 2017, , .		1
56	Personalized maneuver prediction at intersections. , 2017, , .		9
57	Effects of variability in synthetic training data on convolutional neural networks for 3D head reconstruction. , 2017, , .		1
58	Linear supervised transfer learning for the large margin nearest neighbor classifier. , 2017, , .		0
59	Echo State Networks as Novel Approach for Low-Cost Myoelectric Control. Lecture Notes in Computer Science, 2017, , 338-342.	1.3	3
60	Prototypeâ€based models in machine learning. Wiley Interdisciplinary Reviews: Cognitive Science, 2016, 7, 92-111.	2.8	81
61	Online metric learning for an adaptation to confidence drift. , 2016, , .		0
62	KNN Classifier with Self Adjusting Memory for Heterogeneous Concept Drift. , 2016, , .		124
63	acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data. BMC Bioinformatics, 2016, 17, 543.	2.6	22
64	Adaptive structure metrics for automated feedback provision in intelligent tutoring systems. Neurocomputing, 2016, 192, 3-13.	5.9	15
65	Optimal local rejection for classifiers. Neurocomputing, 2016, 214, 445-457.	5.9	27
66	Convergence of Multi-pass Large Margin Nearest Neighbor Metric Learning. Lecture Notes in Computer Science, 2016, , 510-517.	1.3	0
67	Prototype-based Models for the Supervised Learning of Classification Schemes. Proceedings of the International Astronomical Union, 2016, 12, 129-138.	0.0	1
68	Odor recognition in robotics applications by discriminative time-series modeling. Pattern Analysis and Applications, 2016, 19, 207-220.	4.6	19
69	Non-negative Kernel Sparse Coding for the Analysis of Motion Data. Lecture Notes in Computer Science, 2016, , 506-514.	1.3	4
70	Local Reject Option for Deterministic Multi-class SVM. Lecture Notes in Computer Science, 2016, , 251-258.	1.3	1
71	Efficient metric learning for the analysis of motion data. , 2015, , .		1
72	Autonomous Learning of Representations. KI - Kunstliche Intelligenz, 2015, 29, 339-351.	3.2	4

#	Article	IF	CITATIONS
73	Special Issue on Autonomous Learning. KI - Kunstliche Intelligenz, 2015, 29, 323-327.	3.2	3
74	VI Self-Organizing Maps and Learning Vector Quantization for Complex Data. , 2015, , 188-213.		0
75	Discriminative dimensionality reduction for regression problems using the Fisher metric. , 2015, , .		2
76	Stationarity of Matrix Relevance LVQ. , 2015, , .		12
77	Interactive online learning for obstacle classification on a mobile robot. , 2015, , .		28
78	Inferring Feature Relevances From Metric Learning. , 2015, , .		2
79	Automatic discovery of metagenomic structure. , 2015, , .		5
80	Using Discriminative Dimensionality Reduction to Visualize Classifiers. Neural Processing Letters, 2015, 42, 27-54.	3.2	19
81	Data visualization by nonlinear dimensionality reduction. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2015, 5, 51-73.	6.8	47
82	Median variants of learning vector quantization for learning of dissimilarity data. Neurocomputing, 2015, 169, 295-305.	5.9	17
83	Learning Feedback in Intelligent Tutoring Systems. KI - Kunstliche Intelligenz, 2015, 29, 413-418.	3.2	18
84	Combining offline and online classifiers for life-long learning. , 2015, , .		8
85	Metric learning for sequences in relational LVQ. Neurocomputing, 2015, 169, 306-322.	5.9	21
86	Sparse conformal prediction for dissimilarity data. Annals of Mathematics and Artificial Intelligence, 2015, 74, 95-116.	1.3	2
87	Efficient approximations of robust soft learning vector quantization for non-vectorial data. Neurocomputing, 2015, 147, 96-106.	5.9	15
88	Parametric nonlinear dimensionality reduction using kernel t-SNE. Neurocomputing, 2015, 147, 71-82.	5.9	181
89	Valid interpretation of feature relevance for linear data mappings. , 2014, , .		5
90	Example-based feedback provision using structured solution spaces. International Journal of Learning Technology, 2014, 9, 248.	0.2	18

#	Article	IF	CITATIONS
91	Learning interpretable kernelized prototype-based models. Neurocomputing, 2014, 141, 84-96.	5.9	12
92	Learning vector quantization for (dis-)similarities. Neurocomputing, 2014, 131, 43-51.	5.9	53
93	Computational Intelligence in Big Data [Guest Editorial]. IEEE Computational Intelligence Magazine, 2014, 9, 12-13.	3.2	18
94	Adaptive conformal semi-supervised vector quantization for dissimilarity data. Pattern Recognition Letters, 2014, 49, 138-145.	4.2	12
95	How to Select an Example? A Comparison of Selection Strategies in Example-Based Learning. Lecture Notes in Computer Science, 2014, , 340-347.	1.3	5
96	Rejection Strategies for Learning Vector Quantization – A Comparison of Probabilistic and Deterministic Approaches. Advances in Intelligent Systems and Computing, 2014, , 109-118.	0.6	8
97	Generative versus Discriminative Prototype Based Classification. Advances in Intelligent Systems and Computing, 2014, , 123-132.	0.6	11
98	Local Rejection Strategies for Learning Vector Quantization. Lecture Notes in Computer Science, 2014, , 563-570.	1.3	7
99	Efficient Adaptation of Structure Metrics in Prototype-Based Classification. Lecture Notes in Computer Science, 2014, , 571-578.	1.3	1
100	Distance Measures for Prototype Based Classification. Lecture Notes in Computer Science, 2014, , 100-116.	1.3	18
101	Towards a Domain-Independent ITS Middleware Architecture. , 2013, , .		5
102	Preface: Intelligent interactive data visualization. Data Mining and Knowledge Discovery, 2013, 27, 1-3.	3.7	2
103	Regularization and improved interpretation of linear data mappings and adaptive distance measures. , 2013, , .		10
104	Visualizing the quality of dimensionality reduction. Neurocomputing, 2013, 112, 109-123.	5.9	55
105	Nonlinear Dimensionality Reduction for Cluster Identification in Metagenomic Samples. , 2013, , .		18
106	Efficient Approximations of Kernel Robust Soft LVQ. Advances in Intelligent Systems and Computing, 2013, , 183-192.	0.6	2
107	Using Nonlinear Dimensionality Reduction to Visualize Classifiers. Lecture Notes in Computer Science, 2013, , 59-68.	1.3	2
108	Sparse Prototype Representation by Core Sets. Lecture Notes in Computer Science, 2013, , 302-309.	1.3	1

Barbara Hammer

#	Article	IF	CITATIONS
109	A Median Variant of Generalized Learning Vector Quantization. Lecture Notes in Computer Science, 2013, , 19-26.	1.3	6
110	Secure Semi-supervised Vector Quantization for Dissimilarity Data. Lecture Notes in Computer Science, 2013, , 347-356.	1.3	1
111	Challenges in Neural Computation. KI - Kunstliche Intelligenz, 2012, 26, 333-340.	3.2	3
112	A General Framework for Dimensionality-Reducing Data Visualization Mapping. Neural Computation, 2012, 24, 771-804.	2.2	75
113	LINEAR TIME RELATIONAL PROTOTYPE BASED LEARNING. International Journal of Neural Systems, 2012, 22, 1250021.	5.2	15
114	Functional relevance learning in generalized learning vector quantization. Neurocomputing, 2012, 90, 85-95.	5.9	30
115	Approximation techniques for clustering dissimilarity data. Neurocomputing, 2012, 90, 72-84.	5.9	12
116	Limited Rank Matrix Learning, discriminative dimension reduction and visualization. Neural Networks, 2012, 26, 159-173.	5.9	79
117	Cluster Based Feedback Provision Strategies in Intelligent Tutoring Systems. Lecture Notes in Computer Science, 2012, , 699-700.	1.3	9
118	How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning?. Lecture Notes in Computer Science, 2012, , 1-13.	1.3	3
119	Kernel Robust Soft Learning Vector Quantization. Lecture Notes in Computer Science, 2012, , 14-23.	1.3	7
120	Learning Relevant Time Points for Time-Series Data in the Life Sciences. Lecture Notes in Computer Science, 2012, , 531-539.	1.3	3
121	A Conformal Classifier for Dissimilarity Data. International Federation for Information Processing, 2012, , 234-243.	0.4	5
122	Discriminative Dimensionality Reduction Mappings. Lecture Notes in Computer Science, 2012, , 126-138.	1.3	8
123	Patch Processing for Relational Learning Vector Quantization. Lecture Notes in Computer Science, 2012, , 55-63.	1.3	0
124	White Box Classification of Dissimilarity Data. Lecture Notes in Computer Science, 2012, , 309-321.	1.3	4
125	Dimensionality reduction mappings. , 2011, , .		7
126	Local matrix adaptation in topographic neural maps. Neurocomputing, 2011, 74, 522-539.	5.9	23

#	Article	IF	CITATIONS
127	Relational generative topographic mapping. Neurocomputing, 2011, 74, 1359-1371.	5.9	24
128	Neighbor embedding XOM for dimension reduction and visualization. Neurocomputing, 2011, 74, 1340-1350.	5.9	43
129	Relevance learning in generative topographic mapping. Neurocomputing, 2011, 74, 1351-1358.	5.9	3
130	Accelerating kernel clustering for biomedical data analysis. , 2011, , .		3
131	EFFICIENT KERNELIZED PROTOTYPE BASED CLASSIFICATION. International Journal of Neural Systems, 2011, 21, 443-457.	5.2	31
132	Topographic Mapping of Dissimilarity Data. Lecture Notes in Computer Science, 2011, , 1-15.	1.3	5
133	A General Framework for Dimensionality Reduction for Large Data Sets. Lecture Notes in Computer Science, 2011, , 277-287.	1.3	3
134	Prototype-Based Classification of Dissimilarity Data. Lecture Notes in Computer Science, 2011, , 185-197.	1.3	8
135	Relational Extensions of Learning Vector Quantization. Lecture Notes in Computer Science, 2011, , 481-489.	1.3	7
136	Accelerating Kernel Neural Gas. Lecture Notes in Computer Science, 2011, , 150-158.	1.3	0
137	Linear Time Heuristics for Topographic Mapping of Dissimilarity Data. Lecture Notes in Computer Science, 2011, , 25-33.	1.3	Ο
138	Automated generation of classifier based monitoring functions and its application to automotive steering control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 721-726.	0.4	1
139	Evolving trees for the retrieval of mass spectrometry-based bacteria fingerprints. Knowledge and Information Systems, 2010, 25, 327-343.	3.2	6
140	Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data. Neurocomputing, 2010, 73, 1074-1092.	5.9	38
141	Hyperparameter learning in probabilistic prototype-based models. Neurocomputing, 2010, 73, 1117-1124.	5.9	19
142	Local matrix learning in clustering and applications for manifold visualization. Neural Networks, 2010, 23, 476-486.	5.9	7
143	Topographic Mapping of Large Dissimilarity Data Sets. Neural Computation, 2010, 22, 2229-2284.	2.2	83
144	Regularization in Matrix Relevance Learning. IEEE Transactions on Neural Networks, 2010, 21, 831-840.	4.2	59

#	Article	IF	CITATIONS
145	Divergence Based Online Learning in Vector Quantization. Lecture Notes in Computer Science, 2010, , 479-486.	1.3	1
146	Generalized Derivative Based Kernelized Learning Vector Quantization. Lecture Notes in Computer Science, 2010, , 21-28.	1.3	8
147	Clustering Very Large Dissimilarity Data Sets. Lecture Notes in Computer Science, 2010, , 259-273.	1.3	1
148	Visualizing Dissimilarity Data Using Generative Topographic Mapping. Lecture Notes in Computer Science, 2010, , 227-237.	1.3	2
149	Global Coordination Based on Matrix Neural Gas for Dynamic Texture Synthesis. Lecture Notes in Computer Science, 2010, , 84-95.	1.3	Ο
150	The Mathematics of Divergence Based Online Learning in Vector Quantization. Lecture Notes in Computer Science, 2010, , 108-119.	1.3	5
151	Adaptive Relevance Matrices in Learning Vector Quantization. Neural Computation, 2009, 21, 3532-3561.	2.2	248
152	Distance Learning in Discriminative Vector Quantization. Neural Computation, 2009, 21, 2942-2969.	2.2	71
153	Patch clustering for massive data sets. Neurocomputing, 2009, 72, 1455-1469.	5.9	29
154	Cancer informatics by prototype networks in mass spectrometry. Artificial Intelligence in Medicine, 2009, 45, 215-228.	6.5	16
155	Graph-Based Representation of Symbolic Musical Data. Lecture Notes in Computer Science, 2009, , 42-51.	1.3	13
156	Functional Principal Component Learning Using Oja's Method and Sobolev Norms. Lecture Notes in Computer Science, 2009, , 325-333.	1.3	4
157	Comparison of Cluster Algorithms for the Analysis of Text Data Using Kolmogorov Complexity. Lecture Notes in Computer Science, 2009, , 61-69.	1.3	4
158	Nonlinear Dimension Reduction and Visualization of Labeled Data. Lecture Notes in Computer Science, 2009, , 1162-1170.	1.3	2
159	Metric Learning for Prototype-Based Classification. Studies in Computational Intelligence, 2009, , 183-199.	0.9	13
160	Median Topographic Maps for Biomedical Data Sets. Lecture Notes in Computer Science, 2009, , 92-117.	1.3	3
161	Learning dynamics and robustness of vector quantization and neural gas. Neurocomputing, 2008, 71, 1210-1219.	5.9	11
162	Fuzzy classification using information theoretic learning vector quantization. Neurocomputing, 2008, 71, 3070-3076.	5.9	6

#	Article	IF	CITATIONS
163	Matrix Learning for Topographic Neural Maps. Lecture Notes in Computer Science, 2008, , 572-582.	1.3	2
164	Analysis of Spectral Data in Clinical Proteomics by Use of Learning Vector Quantizers. Studies in Computational Intelligence, 2008, , 141-167.	0.9	2
165	Patch Relational Neural Gas – Clustering of Huge Dissimilarity Datasets. Lecture Notes in Computer Science, 2008, , 1-12.	1.3	2
166	Intuitive Clustering of Biological Data. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	3
167	Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods. Briefings in Bioinformatics, 2007, 9, 129-143.	6.5	38
168	Magnification control for batch neural gas. Neurocomputing, 2007, 70, 1225-1234.	5.9	18
169	Supervised Neural Gas for Classification of Functional Data and Its Application to the Analysis of Clinical Proteom Spectra. , 2007, , 1036-1044.		4
170	Neural Gas Clustering for Dissimilarity Data with Continuous Prototypes. , 2007, , 539-546.		3
171	Adaptive Contextual Processing of Structured Data by Recursive Neural Networks: A Survey of Computational Properties. Studies in Computational Intelligence, 2007, , 67-94.	0.9	7
172	Markovian Bias of Neural-based Architectures With Feedback Connections. Studies in Computational Intelligence, 2007, , 95-133.	0.9	17
173	Relational Neural Gas. Lecture Notes in Computer Science, 2007, , 190-204.	1.3	18
174	Relational Topographic Maps. Lecture Notes in Computer Science, 2007, , 93-105.	1.3	11
175	Batch and median neural gas. Neural Networks, 2006, 19, 762-771.	5.9	126
176	Performance analysis of LVQ algorithms: A statistical physics approach. Neural Networks, 2006, 19, 817-829.	5.9	23
177	Generalized relevance LVQ (GRLVQ) with correlation measures for gene expression analysis. Neurocomputing, 2006, 69, 651-659.	5.9	23
178	Learning vector quantization: The dynamics of winner-takes-all algorithms. Neurocomputing, 2006, 69, 660-670.	5.9	29
179	Supervised Batch Neural Gas. Lecture Notes in Computer Science, 2006, , 33-45.	1.3	11
180	Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes. Lecture Notes in Computer Science, 2006, , 46-56.	1.3	9

#	Article	IF	CITATIONS
181	Perspectives of Self-adapted Self-organizing Clustering in Organic Computing. Lecture Notes in Computer Science, 2006, , 141-159.	1.3	1
182	Special issue on neural networks and kernel methods for structured domains. Neural Networks, 2005, 18, 1015-1018.	5.9	9
183	On approximate learning by multi-layered feedforward circuits. Theoretical Computer Science, 2005, 348, 95-127.	0.9	3
184	Unsupervised recursive sequence processing. Neurocomputing, 2005, 63, 69-97.	5.9	14
185	Improving iterative repair strategies for scheduling with the SVM. Neurocomputing, 2005, 63, 271-292.	5.9	15
186	Merge SOM for temporal data. Neurocomputing, 2005, 64, 39-71.	5.9	97
187	On the Generalization Ability of GRLVQ Networks. Neural Processing Letters, 2005, 21, 109-120.	3.2	54
188	Supervised Neural Gas with General Similarity Measure. Neural Processing Letters, 2005, 21, 21-44.	3.2	117
189	Universal Approximation Capability of Cascade Correlation for Structures. Neural Computation, 2005, 17, 1109-1159.	2.2	47
190	A general framework for unsupervised processing of structured data. Neurocomputing, 2004, 57, 3-35.	5.9	70
191	Recursive self-organizing network models. Neural Networks, 2004, 17, 1061-1085.	5.9	121
192	Relevance LVQ versus SVM. Lecture Notes in Computer Science, 2004, , 592-597.	1.3	15
193	A Note on the Universal Approximation Capability of Support Vector Machines. Neural Processing Letters, 2003, 17, 43-53.	3.2	90
194	Neural maps in remote sensing image analysis. Neural Networks, 2003, 16, 389-403.	5.9	138
195	Architectural Bias in Recurrent Neural Networks: Fractal Analysis. Neural Computation, 2003, 15, 1931-1957.	2.2	16
196	Recurrent Neural Networks with Small Weights Implement Definite Memory Machines. Neural Computation, 2003, 15, 1897-1929.	2.2	47
197	Determining Relevant Input Dimensions for the Self Organizing Map. , 2003, , 388-393.		1
198	Recurrent networks for structured data – A unifying approach and its properties. Cognitive Systems Research, 2002, 3, 145-165.	2.7	20

#	Article	IF	CITATIONS
199	Generalized relevance learning vector quantization. Neural Networks, 2002, 15, 1059-1068.	5.9	329
200	Rule Extraction from Self-Organizing Networks. Lecture Notes in Computer Science, 2002, , 877-883.	1.3	16
201	Architectural Bias in Recurrent Neural Networks — Fractal Analysis. Lecture Notes in Computer Science, 2002, , 1359-1364.	1.3	1
202	Neural Smithing – Supervised Learning in Feedforward Artificial Neural Networks. Pattern Analysis and Applications, 2001, 4, 73-74.	4.6	7
203	Generalized Relevance LVQ for Time Series. Lecture Notes in Computer Science, 2001, , 677-683.	1.3	5
204	Estimating Relevant Input Dimensions for Self-organizing Algorithms. , 2001, , 173-180.		5
205	On the approximation capability of recurrent neural networks. Neurocomputing, 2000, 31, 107-123.	5.9	75
206	Learning with recurrent neural networks. Lecture Notes in Control and Information Sciences, 2000, ,	1.0	40
207	On the Learnability of Recursive Data. Mathematics of Control, Signals, and Systems, 1999, 12, 62-79.	2.3	12
208	Prototype Based Recognition of Splice Sites. , 0, , 25-55.		2
209	Topographic Processing of Very Large Text Datasets. , 0, , 525-532.		1