Barbara Viviani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2842760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Frontiers in Neuroendocrinology, 2020, 56, 100804.	5.2	37
2	Sex-Dependent Effects of Developmental Lead Exposure in Wistar Rats: Evidence from Behavioral and Molecular Correlates. International Journal of Molecular Sciences, 2020, 21, 2664.	4.1	12
3	Neuron-Glia Interactions Studied with In Vitro Co-Cultures. Neuromethods, 2019, , 69-85.	0.3	1
4	Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology, 2015, 96, 70-82.	4.1	473
5	Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Progress in Neurobiology, 2014, 113, 56-69.	5.7	113
6	Corticosteroids modulate the expression of the PKC-anchoring protein RACK-1 and cytokine release in THP-1 cells. Pharmacological Research, 2014, 81, 10-16.	7.1	24
7	Early maternal deprivation immunologically primes hippocampal synapses by redistributing interleukin-1 receptor type I in a sex dependent manner. Brain, Behavior, and Immunity, 2014, 35, 135-143.	4.1	37
8	Perspectives on neuroinflammation and excitotoxicity: A neurotoxic conspiracy?. NeuroToxicology, 2014, 43, 10-20.	3.0	72
9	Diabetic neuropathic pain: a role for testosterone metabolites. Journal of Endocrinology, 2014, 221, 1-13.	2.6	76
10	Multimodal Analysis in Acute and Chronic Experimental Autoimmune Encephalomyelitis. Journal of NeuroImmune Pharmacology, 2013, 8, 238-250.	4.1	16
11	Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiology of Disease, 2013, 52, 229-236.	4.4	155
12	Neuroactive steroids, their metabolites, and neuroinflammation. Journal of Molecular Endocrinology, 2012, 49, R125-R134.	2.5	68
13	Somatostatin Modulates Insulin-Degrading-Enzyme Metabolism: Implications for the Regulation of Microglia Activity in AD. PLoS ONE, 2012, 7, e34376.	2.5	39
14	In vitro characterization of the immunotoxic potential of several perfluorinated compounds (PFCs). Toxicology and Applied Pharmacology, 2012, 258, 248-255.	2.8	136
15	Glia-Neuron Sandwich Cocultures: An In Vitro Approach to Evaluate Cell-to-Cell Communication in Neuroinflammation and Neurotoxicity. Methods in Molecular Biology, 2011, 758, 135-152.	0.9	8
16	Further development of the NCTC 2544 IL-18 assay to identify in vitro contact allergens. Toxicology in Vitro, 2011, 25, 724-732.	2.4	60
17	Cytokines and neuronal channels: A molecular basis for age-related decline of neuronal function?. Experimental Gerontology, 2011, 46, 199-206.	2.8	35
18	Distribution of interleukin-1 receptor complex at the synaptic membrane driven by interleukin-1β and NMDA stimulation. Journal of Neuroinflammation, 2011, 8, 14.	7.2	106

BARBARA VIVIANI

#	Article	IF	CITATIONS
19	Use of IL-8 release and p38 MAPK activation in THP-1 cells to identify allergens and to assess their potency in vitro. Toxicology in Vitro, 2010, 24, 1803-1809.	2.4	50
20	Skin immunosenescence: decreased receptor for activated C kinase-1 expression correlates with defective tumour necrosis factor-α production in epidermal cells. British Journal of Dermatology, 2009, 160, 16-25.	1.5	15
21	Expression of sterol 27-hydroxylase in glial cells and its regulation by liver X receptor signaling. Neuroscience, 2009, 164, 530-540.	2.3	32
22	Dithiocarbamate propineb induces acetylcholine release through cytoskeletal actin depolymerization in PC12 cells. Toxicology Letters, 2008, 182, 63-68.	0.8	9
23	Role of p38 MAPK in the selective release of IL-8 induced by chemical allergen in naÃ⁻ve THP-1 cells. Toxicology in Vitro, 2008, 22, 386-395.	2.4	67
24	Endogenous Erythropoietin as Part of the Cytokine Network in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Molecular Medicine, 2008, 14, 682-688.	4.4	13
25	Cytokines and Neuronal Ion Channels in Health and Disease. International Review of Neurobiology, 2007, 82, 247-263.	2.0	171
26	Role of SP-1 in SDS-Induced Adipose Differentiation Related Protein Synthesis in Human Keratinocytes. Gene Regulation and Systems Biology, 2007, 1, 117762500700100.	2.3	1
27	Immunomodulatory effects of the herbicide propanil on cytokine production in humans: In vivo and in vitro exposure. Toxicology and Applied Pharmacology, 2007, 222, 202-210.	2.8	31
28	Role of SP-1 in SDS-induced adipose differentiation related protein synthesis in human keratinocytes. Gene Regulation and Systems Biology, 2007, 1, 207-15.	2.3	1
29	CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation. Respiratory Research, 2006, 7, 42.	3.6	60
30	Preparation and Coculture of Neurons and Glial Cells. Current Protocols in Cell Biology, 2006, 32, Unit 2.7.	2.3	18
31	Nonhematopoietic Erythropoietin Derivatives Prevent Motoneuron Degeneration In Vitro and In Vivo. Molecular Medicine, 2006, 12, 153-160.	4.4	82
32	Molecular mechanisms underlying mancozeb-induced inhibition of TNF-alpha production. Toxicology and Applied Pharmacology, 2006, 212, 89-98.	2.8	39
33	High interleukin-10 production is associated with low antibody response to influenza vaccination in the elderly. Journal of Leukocyte Biology, 2006, 80, 376-382.	3.3	51
34	Interleukin-1β Released by gp120 Drives Neural Death through Tyrosine Phosphorylation and Trafficking of NMDA Receptors. Journal of Biological Chemistry, 2006, 281, 30212-30222.	3.4	107
35	Erythropoietin protects primary hippocampal neurons increasing the expression of brain-derived neurotrophic factor. Journal of Neurochemistry, 2005, 93, 412-421.	3.9	143
36	Increased carrageenanâ€induced acute lung inflammation in old rats. Immunology, 2005, 115, 253-261.	4.4	37

BARBARA VIVIANI

#	Article	IF	CITATIONS
37	Age-related decline in RACK-1 expression in human leukocytes is correlated to plasma levels of dehydroepiandrosterone. Journal of Leukocyte Biology, 2005, 77, 247-256.	3.3	31
38	Erythropoietin: A Novel Neuroprotective Cytokine. NeuroToxicology, 2005, 26, 923-928.	3.0	78
39	Resistance to silica-induced lung fibrosis in senescent rats: role of alveolar macrophages and tumor necrosis factor- \hat{I}_{\pm} (TNF). Mechanisms of Ageing and Development, 2004, 125, 145-146.	4.6	15
40	Cytokines role in neurodegenerative events. Toxicology Letters, 2004, 149, 85-89.	0.8	94
41	Cytokines in Neuronal–Glial Interaction. , 2004, , 125-140.		О
42	Induction of Adipose Differentiation Related Protein and Neutral Lipid Droplet Accumulation in Keratinocytes by Skin Irritants. Journal of Investigative Dermatology, 2003, 121, 337-344.	0.7	25
43	Resistance to Acute Silicosis in Senescent Rats:Â Role of Alveolar Macrophages. Chemical Research in Toxicology, 2003, 16, 1520-1527.	3.3	16
44	Coculturing Neurons and Glial Cells. , 2003, Chapter 12, Unit12.10.		4
45	Erythropoietin Selectively Attenuates Cytokine Production and Inflammation in Cerebral Ischemia by Targeting Neuronal Apoptosis. Journal of Experimental Medicine, 2003, 198, 971-975.	8.5	481
46	In Vivo Dehydroepiandrosterone Restores Age-Associated Defects in the Protein Kinase C Signal Transduction Pathway and Related Functional Responses. Journal of Immunology, 2002, 168, 1753-1758.	0.8	54
47	Facilitation of Acetylcholine Signaling by the Dithiocarbamate Fungicide Propineb. Chemical Research in Toxicology, 2002, 15, 26-32.	3.3	50
48	The anti-inflammatory activity of estrogen in glial cells is regulated by the PKC-anchoring protein RACK-1. Journal of Neurochemistry, 2002, 83, 1180-1187.	3.9	22
49	Lack of PSD-95 drives hippocampal neuronal cell death through activation of an αCaMKII transduction pathway. European Journal of Neuroscience, 2002, 16, 777-786.	2.6	42
50	Identification by DNA Macroarray of nur77 as a Gene Induced by Di-n-butyltin Dichloride: Its Role in Organotin-Induced Apoptosis. Toxicology and Applied Pharmacology, 2002, 181, 27-31.	2.8	34
51	Reactive oxygen species generated by glia are responsible for neuron death induced by human immunodeficiency virus-glycoprotein 120 in vitro. Neuroscience, 2001, 107, 51-58.	2.3	83
52	Estrogen Prevents the Lipopolysaccharide-Induced Inflammatory Response in Microglia. Journal of Neuroscience, 2001, 21, 1809-1818.	3.6	415
53	Ontogenesis of protein kinase C βII and its anchoring protein RACK1 in the maturation of alveolar macrophage functional responses. Immunology Letters, 2001, 76, 89-93.	2.5	10
54	Cyclosporin A Exacerbates Skin Irritation Induced by Tributyltin by Increasing Nuclear Factor κB Activation. Journal of Investigative Dermatology, 2001, 117, 1627-1634.	0.7	12

#	Article	IF	CITATIONS
55	Trimethyltin-Activated Cyclooxygenase Stimulates Tumor Necrosis Factor-α Release from Glial Cells through Reactive Oxygen Species. Toxicology and Applied Pharmacology, 2001, 172, 93-97.	2.8	24
56	Cell culture models for neurotoxicology. , 2001, 17, 319-334.		13
57	Cloricromene, a semi-synthetic coumarin derivative, inhibits tumor necrosis factor-α production at a pre-transcriptional level. European Journal of Pharmacology, 2001, 418, 231-237.	3.5	18
58	Dying neural cells activate glia through the release of a protease product. Clia, 2000, 32, 84-90.	4.9	41
59	Organotins Induce Apoptosis by Disturbance of [Ca2+]i and Mitochondrial Activity, Causing Oxidative Stress and Activation of Caspases in Rat Thymocytes. Toxicology and Applied Pharmacology, 2000, 169, 185-190.	2.8	123
60	Sodium Arsenate Induces Overproduction of Interleukin-1α in Murine Keratinocytes: Role of Mitochondria. Journal of Investigative Dermatology, 1999, 113, 760-765.	0.7	83
61	Glia Increase Degeneration of Hippocampal Neurons through Release of Tumor Necrosis Factor-α. Toxicology and Applied Pharmacology, 1998, 150, 271-276.	2.8	124
62	Neurotoxicity: An active role for GLIA?. , 1998, 23, 1-12.		8
63	Trimethyltin but not triethyltin induces specific neural cell death through the protein stannin. , 1998, 23, 139-149.		4
64	Primary Role of Mitochondria and Calcium Ions in the Induction of Reactive Oxygen Species by External Stimuli such as Triorganotins. Toxicology in Vitro, 1998, 12, 551-556.	2.4	11
65	Actin modifications and calcium homoeostasis in neurotoxicity. The case of organotin salts. Toxicology in Vitro, 1997, 11, 499-503.	2.4	2
66	Inorganic mercury modifies Ca2+ signals, triggers apoptosis and potentiates NMDA toxicity in cerebellar granule neurons. Cell Death and Differentiation, 1997, 4, 317-324.	11.2	24
67	Role of Mitochondria and Calcium Ions in Tributyltin-Induced Gene Regulatory Pathways. Toxicology and Applied Pharmacology, 1997, 145, 74-81.	2.8	32
68	Thyroid peroxidase as toxicity target for dithiocarbamates. Archives of Toxicology, 1997, 71, 508-512.	4.2	65
69	NF-κB Activation by Triphenyltin Triggers Apoptosis in HL-60 Cells. Experimental Cell Research, 1996, 226, 98-104.	2.6	55
70	ls Actin Polymerization Relevant to Neurosecretion? A Study on Neuroblastoma Cells. Biochemical and Biophysical Research Communications, 1996, 223, 712-717.	2.1	11
71	Triethyltin Interferes with Ca2+Signaling and Potentiates Norepinephrine Release in PC12 Cells. Toxicology and Applied Pharmacology, 1996, 140, 289-295.	2.8	22
72	The predominant role of surfactants in the modulation of toxicity of detergent products: An in vitro analysis of shampoos. Toxicology in Vitro, 1994, 8, 91-98.	2.4	3

#	Article	IF	CITATIONS
73	Cell cultures: A tool for the study of mechanisms of toxicity. Toxicology in Vitro, 1993, 7, 559-568.	2.4	14
74	Reversibility of tributyltin-chloride-induced protein synthesis inhibition after ATP recovery in HEL-30 cells. Toxicology Letters, 1990, 52, 311-317.	0.8	45