
Freda K Stevenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2842006/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unmutated Ig VH Genes Are Associated With a More Aggressive Form of Chronic Lymphocytic Leukemia. Blood, 1999, 94, 1848-1854.	1.4	2,376
2	CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood, 2002, 99, 1023-1029.	1.4	555
3	DNA vaccines: precision tools for activating effective immunity against cancer. Nature Reviews Cancer, 2008, 8, 108-120.	28.4	388
4	Chronic lymphocytic leukaemia. Nature Reviews Disease Primers, 2017, 3, 16096.	30.5	363
5	Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood, 2004, 103, 4389-4395.	1.4	347
6	B-cell receptor signaling in chronic lymphocytic leukemia. Blood, 2011, 118, 4313-4320.	1.4	331
7	DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nature Medicine, 1998, 4, 1281-1286.	30.7	283
8	Differential signaling via surface IgM is associated with VH gene mutational status and CD38 expression in chronic lymphocytic leukemia. Blood, 2003, 101, 1087-1093.	1.4	279
9	Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood, 2002, 99, 2562-2568.	1.4	237
10	Reversible anergy of slgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status. Blood, 2007, 109, 4424-4431.	1.4	212
11	Differential Rates of Somatic Hypermutation in VH Genes Among Subsets of Chronic Lymphocytic Leukemia Defined by Chromosomal Abnormalities. Blood, 1997, 89, 4153-4160.	1.4	208
12	DNA Vaccination with Electroporation Induces Increased Antibody Responses in Patients with Prostate Cancer. Human Gene Therapy, 2009, 20, 1269-1278.	2.7	172
13	Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18587-18592.	7.1	151
14	VH Gene Sequences From Primary Central Nervous System Lymphomas Indicate Derivation From Highly Mutated Germinal Center B Cells With Ongoing Mutational Activity. Blood, 1999, 94, 1738-1746.	1.4	145
15	Bodyguards and assassins: Bcl-2 family proteins and apoptosis control in chronic lymphocytic leukaemia. Immunology, 2005, 114, 441-449.	4.4	139
16	Analysis of VH Genes in Follicular and Diffuse Lymphoma Shows Ongoing Somatic Mutation and Multiple Isotype Transcripts in Early Disease With Changes During Disease Progression. Blood, 1998, 91, 4292-4299.	1.4	133
17	Insight into the origin and clonal history of B-cell tumors as revealed by analysis of immunoglobulin variable region genes. Immunological Reviews, 1998, 162, 247-259.	6.0	132
18	Immunoglobulin Heavy Chain Locus Events and Expression of Activation-Induced Cytidine Deaminase in Epithelial Breast Cancer Cell Lines. Cancer Research, 2006, 66, 3996-4000.	0.9	119

#	Article	IF	CITATIONS
19	Idiotypic DNA Vaccines Against B-cell Lymphoma. Immunological Reviews, 1995, 145, 211-228.	6.0	118
20	Human Follicular Lymphoma Cells Contain Oligomannose Glycans in the Antigen-binding Site of the B-cell Receptor. Journal of Biological Chemistry, 2007, 282, 7405-7415.	3.4	117
21	DNA vaccines to attack cancer. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14646-14652.	7.1	109
22	Utilization of the VH4-21 Gene Segment by Anti-DNA Antibodies from Patients with Systemic Lupus Erythematosus. Journal of Autoimmunity, 1993, 6, 809-825.	6.5	107
23	Typical Waldenstrom macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events. Blood, 2002, 100, 1505-1507.	1.4	105
24	Electroporation as a "Prime/Boost―Strategy for Naked DNA Vaccination against a Tumor Antigen. Journal of Immunology, 2005, 174, 6292-6298.	0.8	100
25	Evidence for Involvement of a Hydrophobic Patch in Framework Region 1 of Human V4-34-Encoded Igs in Recognition of the Red Blood Cell I Antigen. Journal of Immunology, 2002, 169, 3777-3782.	0.8	96
26	The occurrence and significance of V gene mutations in B cell—Derived human malignancy. Advances in Cancer Research, 2001, 83, 81-116.	5.0	95
27	The I Binding Specificity of Human VH4-34 (VH4-21) Encoded Antibodies is Determined by Both VHFramework Region 1 and Complementarity Determining Region 3. Journal of Molecular Biology, 1996, 256, 577-589.	4.2	94
28	Myeloma VL and VH Gene Sequences Reveal a Complementary Imprint of Antigen Selection in Tumor Cells. Blood, 1997, 89, 219-226.	1.4	90
29	DNA Fusion Vaccine Designed to Induce Cytotoxic T Cell Responses Against Defined Peptide Motifs: Implications for Cancer Vaccines. Journal of Immunology, 2001, 167, 1558-1565.	0.8	90
30	DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8+ T-cell responses and increases PSA doubling time. Cancer Immunology, Immunotherapy, 2012, 61, 2161-2170.	4.2	89
31	The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: proliferation or anergy. Haematologica, 2014, 99, 1138-1148.	3.5	87
32	Surface IgM stimulation induces MEK1/2-dependent MYC expression in chronic lymphocytic leukemia cells. Blood, 2012, 119, 170-179.	1.4	85
33	Hairy cell leukemia: at the crossroad of somatic mutation and isotype switch. Blood, 2004, 104, 3312-3317.	1.4	84
34	The normal IGHV1-69–derived B-cell repertoire contains stereotypic patterns characteristic of unmutated CLL. Blood, 2010, 115, 71-77.	1.4	83
35	Critical Components of a DNA Fusion Vaccine Able to Induce Protective Cytotoxic T Cells Against a Single Epitope of a Tumor Antigen. Journal of Immunology, 2002, 169, 3908-3913.	0.8	79
36	Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells. Blood, 2015, 126, 1902-1910.	1.4	79

#	Article	IF	CITATIONS
37	DNA fusion gene vaccines against cancer: from the laboratory to the clinic. Immunological Reviews, 2004, 199, 156-180.	6.0	78
38	Unmutated Ig VH Genes Are Associated With a More Aggressive Form of Chronic Lymphocytic Leukemia. Blood, 1999, 94, 1848-1854.	1.4	78
39	Tumor cells of hairy cell leukemia express multiple clonally related immunoglobulin isotypes via RNA splicing. Blood, 2001, 98, 1174-1181.	1.4	77
40	IL-4 enhances expression and function of surface IgM in CLL cells. Blood, 2016, 127, 3015-3025.	1.4	76
41	Targeting B-cell anergy in chronic lymphocytic leukemia. Blood, 2013, 121, 3879-3888.	1.4	73
42	PML-RARA–targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nature Medicine, 2003, 9, 1413-1417.	30.7	72
43	Plant viral genes in DNA idiotypic vaccines activate linked CD4+ T-cell mediated immunity against B-cell malignancies. Nature Biotechnology, 2001, 19, 760-764.	17.5	71
44	Immunogenetic analysis of the immune response to pneumococcal polysaccharide. European Journal of Immunology, 2000, 30, 1214-1223.	2.9	70
45	Immunotherapy of Hematologic Malignancy. Hematology American Society of Hematology Education Program, 2003, 2003, 331-349.	2.5	67
46	Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma. Blood, 2015, 125, 3287-3296.	1.4	66
47	Vaccination of human subjects expands both specific and bystander memory T cells but antibody production remains vaccine specific. Blood, 2006, 107, 2806-2813.	1.4	65
48	Features of the overexpressed V1-69 genes in the unmutated subset of chronic lymphocytic leukemia are distinct from those in the healthy elderly repertoire. Blood, 2003, 101, 3082-3084.	1.4	64
49	DNA vaccines against cancer come of age. Current Opinion in Immunology, 2010, 22, 264-270.	5.5	63
50	DNA vaccination induces WT1-specific T-cell responses with potential clinical relevance. Blood, 2008, 112, 2956-2964.	1.4	61
51	A Genetic Approach to Idiotypic Vaccination. Journal of Immunotherapy, 1993, 14, 273-278.	2.4	58
52	Identification in CLL of circulating intraclonal subgroups with varying B-cell receptor expression and function. Blood, 2013, 122, 2664-2672.	1.4	58
53	Plant Virus Particles Carrying Tumour Antigen Activate TLR7 and Induce High Levels of Protective Antibody. PLoS ONE, 2015, 10, e0118096.	2.5	58
54	Prospects for the Treatment of B Cell Tumors Using Idiotypic Vaccination. International Reviews of Immunology, 1989, 4, 271-310.	3.3	56

#	Article	IF	CITATIONS
55	Incidence of potential glycosylation sites in immunoglobulin variable regions distinguishes between subsets of Burkitt's lymphoma and mucosa-associated lymphoid tissue lymphoma. British Journal of Haematology, 2003, 120, 217-222.	2.5	56
56	Primary central nervous system lymphoma: tumor-related clones exist in the blood and bone marrow with evidence for separate development. Blood, 2009, 113, 4677-4680.	1.4	56
57	Engagement of the B-cell receptor of chronic lymphocytic leukemia cells drives global and MYC-specific mRNA translation. Blood, 2016, 127, 449-457.	1.4	56
58	Heterogeneous response of antimitochondrial autoantibodies and bile duct apical staining monoclonal antibodies to pyruvate dehydrogenase complex E2: The molecule versus the mimic. Hepatology, 2001, 33, 792-801.	7.3	54
59	Surface IgM of CLL cells displays unusual glycans indicative of engagement of antigen in vivo. Blood, 2010, 115, 4198-4205.	1.4	54
60	Surface IgM expression and function are associated with clinical behavior, genetic abnormalities, and DNA methylation in CLL. Blood, 2016, 128, 816-826.	1.4	54
61	Manipulation of pathogen-derived genes to influence antigen presentation via DNA vaccines. Vaccine, 1999, 17, 3030-3038.	3.8	53
62	Remarkable selective glycosylation of the immunoglobulin variable region in follicular lymphoma. Molecular Immunology, 2008, 45, 1567-1572.	2.2	52
63	Mechanisms and clinical significance of BIM phosphorylation in chronic lymphocytic leukemia. Blood, 2012, 119, 1726-1736.	1.4	52
64	Bystander stimulation of activated CD4 ⁺ T cells of unrelated specificity following a booster vaccination with tetanus toxoid. European Journal of Immunology, 2010, 40, 976-985.	2.9	51
65	The Dual Syk/JAK Inhibitor Cerdulatinib Antagonizes B-cell Receptor and Microenvironmental Signaling in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2017, 23, 2313-2324.	7.0	51
66	Critical influences on the pathogenesis of follicular lymphoma. Blood, 2018, 131, 2297-2306.	1.4	48
67	Introduction to a review series on therapeutic antibodies. Blood, 2018, 131, 1-1.	1.4	47
68	VH Gene Analysis of IgM-Secreting Myeloma Indicates an Origin From a Memory Cell Undergoing Isotype Switch Events. Blood, 1999, 94, 1070-1076.	1.4	46
69	Pattern of usage and somatic hypermutation in the VH5 gene segments of a patient with asthma: Implications for IgE. European Journal of Immunology, 1997, 27, 162-170.	2.9	44
70	Somatic mutation of bcl-6 genes can occur in the absence of VH mutations in chronic lymphocytic leukemia. Blood, 2000, 95, 3534-3540.	1.4	42
71	The role of the B-cell receptor in the pathogenesis of chronic lymphocytic leukaemia. Seminars in Cancer Biology, 2010, 20, 391-399.	9.6	42
72	The Meaning and Relevance of B-Cell Receptor Structure and Function in Chronic Lymphocytic Leukemia. Seminars in Hematology, 2014, 51, 158-167.	3.4	42

#	Article	IF	CITATIONS
73	Structural and Functional Features of the B-Cell Receptor in IgG-Positive Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2006, 12, 1672-1679.	7.0	40
74	V H gene analysis of splenic marginal zone lymphomas reveals diversity in mutational status and initiation of somatic mutation in vivo. Blood, 2002, 100, 2659-2661.	1.4	39
75	Dual recognition of lipid A and DNA by human antibodies encoded by the VH4-21 gene: A possible link between infection and lupus. Human Antibodies, 1995, 6, 52-56.	1.5	38
76	VH Gene Analysis of Clonally Related IgM and IgG From Human Lymphoplasmacytoid B-Cell Tumors With Chronic Lymphocytic Leukemia Features and High Serum Monoclonal IgG. Blood, 1998, 91, 238-243.	1.4	38
77	Deregulated expression of the Myc cellular oncogene drives development of mouse "Burkitt-like― lymphomas from naive B cells. Blood, 2005, 105, 2135-2137.	1.4	38
78	lg gene diversification and selection in follicular lymphoma, diffuse large B cell lymphoma and primary central nervous system lymphoma revealed by lineage tree and mutation analyses. International Immunology, 2010, 22, 875-887.	4.0	38
79	Origins of the malignant clone in typical Waldenstrom's macroglobulinemia. Seminars in Oncology, 2003, 30, 136-141.	2.2	37
80	Common Patterns of B Cell Perturbation and Expanded V4-34 Immunoglobulin Gene Usage in Autoimmunity and Infection. Autoimmunity, 2004, 37, 9-15.	2.6	36
81	A plant-expressed conjugate vaccine breaks CD4 ⁺ tolerance and induces potent immunity against metastatic Her2 ⁺ breast cancer. Oncolmmunology, 2016, 5, e1166323.	4.6	36
82	Mantle cell lymphoma with t(11;14) and unmutated or mutated VH genes expresses AID and undergoes isotype switch events. Blood, 2004, 103, 2795-2798.	1.4	35
83	Stimulation of surface IgM of chronic lymphocytic leukemia cells induces an unfolded protein response dependent on BTK and SYK. Blood, 2014, 124, 3101-3109.	1.4	34
84	The PI3K/mTOR inhibitor PF-04691502 induces apoptosis and inhibits microenvironmental signaling in CLL and the Eµ-TCL1 mouse model. Blood, 2015, 125, 4032-4041.	1.4	34
85	Immunogenetic analysis of the heavy chain variable regions of IgE from patients allergic toÂpeanutsâ~†â~†â~†â~á Journal of Allergy and Clinical Immunology, 1998, 101, 391-396.	ì [~] â [~]	33
86	Proteomic Analysis of Chronic Lymphocytic Leukemia Subtypes with Mutated or Unmutated Ig VH Genes. Molecular and Cellular Proteomics, 2003, 2, 1331-1341.	3.8	32
87	Tapasin shapes immunodominance hierarchies according to the kinetic stability of peptide – MHC class I complexes. European Journal of Immunology, 2008, 38, 364-369.	2.9	32
88	The Immunoglobulin V _H Gene, V _H 4–21, Specifically Encodes Autoantiâ€Red Cell Antibodies against the I or i Antigens. Vox Sanguinis, 1995, 68, 231-235.	1.5	31
89	Prime-Boost with Alternating DNA Vaccines Designed to Engage Different Antigen Presentation Pathways Generates High Frequencies of Peptide-Specific CD8+ T Cells. Journal of Immunology, 2006, 177, 6626-6633.	0.8	31
90	Follicular lymphoma and the immune system: from pathogenesis to antibody therapy. Blood, 2012, 119, 3659-3667.	1.4	31

#	Article	IF	CITATIONS
91	DNA vaccines and adjuvants. Immunological Reviews, 2004, 199, 5-8.	6.0	30
92	A Pilot Study of Idiotypic Vaccination for Follicular B-cell Lymphoma Using a Genetic Approach. University of Bristol, Bristol, United Kingdom. Human Gene Therapy, 1997, 8, 1287-1299.	2.7	29
93	Clonally related IgE and IgG4 transcripts in blood lymphocytes of patients with asthma reveal differing patterns of somatic mutation. European Journal of Immunology, 1998, 28, 3354-3361.	2.9	29
94	DNA Fusion Vaccines Induce Targeted Epitope-Specific CTLs against Minor Histocompatibility Antigens from a Normal or Tolerized Repertoire. Journal of Immunology, 2004, 173, 4492-4499.	0.8	28
95	Linear doggybone DNA vaccine induces similar immunological responses to conventional plasmid DNA independently of immune recognition by TLR9 in a pre-clinical model. Cancer Immunology, Immunotherapy, 2018, 67, 627-638.	4.2	28
96	Anti-idiotype vaccines. British Journal of Haematology, 2003, 123, 770-781.	2.5	27
97	Idiotypic DNA vaccination for the treatment of multiple myeloma: safety and immunogenicity in a phase I clinical study. Cancer Immunology, Immunotherapy, 2015, 64, 1021-1032.	4.2	27
98	Vaccination with DNA encoding a single-chain TCR fusion protein induces anticlonotypic immunity and protects against T-cell lymphoma. Cancer Research, 2002, 62, 1757-60.	0.9	27
99	DNA fusion vaccines against B-cell tumors. Trends in Molecular Medicine, 2001, 7, 566-572.	6.7	26
100	A Genetic Approach to Idiotypic Vaccination for B Cell Lymphoma. Annals of the New York Academy of Sciences, 1995, 772, 212-226.	3.8	25
101	Patterns of somatic mutations in VH genes reveal pathways of clonal transformation from MGUS to multiple myeloma. Blood, 2003, 101, 4137-4139.	1.4	25
102	Inhibition of a vaccine-induced anti-tumor B cell response by soluble protein antigen in the absence of continuing T cell help. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10987-10992.	7.1	24
103	Targeting Carcinoembryonic Antigen with DNA Vaccination: On-Target Adverse Events Link with Immunologic and Clinical Outcomes. Clinical Cancer Research, 2016, 22, 4827-4836.	7.0	24
104	VP22 enhances antibody responses from DNA vaccines but not by intercellular spread. Vaccine, 2005, 23, 1931-1940.	3.8	23
105	Vaccination Expands Antigen-Specific CD4+ Memory T Cells and Mobilizes Bystander Central Memory T Cells. PLoS ONE, 2015, 10, e0136717.	2.5	23
106	Ibrutinib Therapy Releases Leukemic Surface IgM from Antigen Drive in Chronic Lymphocytic Leukemia Patients. Clinical Cancer Research, 2019, 25, 2503-2512.	7.0	23
107	IGHV sequencing reveals acquired N-glycosylation sites as a clonal and stable event during follicular lymphoma evolution. Blood, 2020, 135, 834-844.	1.4	23
108	A ?-herpesvirus immune evasion gene allows tumor cellsin vivo to escape attack by cytotoxic T cells specific for a tumor epitope. European Journal of Immunology, 2002, 32, 3481-3487.	2.9	22

#	Article	IF	CITATIONS
109	Tumor Vaccines. Advances in Immunology, 2004, 82, 49-103.	2.2	22
110	Update on cancer vaccines. Current Opinion in Oncology, 2005, 17, 573-577.	2.4	22
111	Prolonged Antigen Expression following DNA Vaccination Impairs Effector CD8+ T Cell Function and Memory Development. Journal of Immunology, 2007, 179, 8313-8321.	0.8	22
112	Monoclonal Antibodies Raised Against the Idiotype of the Murine B Cell Lymphoma, BCL ₁ Act Primarily with Heavy Chain Determinants. Hybridoma, 1991, 10, 219-227.	0.6	21
113	The Immunoglobulin V(H) Gene, V(H)4-21, Specifically Encodes Autoanti-Red Cell Antibodies against the I or i Antigens. Vox Sanguinis, 1995, 68, 231-235.	1.5	21
114	PASD1 is a potential multiple myeloma–associated antigen. Blood, 2006, 108, 3953-3955.	1.4	21
115	DNA Fusion Vaccines Induce Epitope-Specific Cytotoxic CD8+ T Cells against Human Leukemia-Associated Minor Histocompatibility Antigens. Cancer Research, 2006, 66, 5436-5442.	0.9	21
116	DNA fusion vaccines enter the clinic. Cancer Immunology, Immunotherapy, 2011, 60, 1147-1151.	4.2	21
117	Pattern of usage of the VH4–21 gene by B lymphocytes in a patient with EBV infection indicates ongoing mutation and class switching. Molecular Immunology, 1995, 32, 347-353.	2.2	20
118	Insight into the potential for DNA idiotypic fusion vaccines designed for patients by analysing xenogeneic anti-idiotypic antibody responses. Immunology, 2002, 107, 39-45.	4.4	20
119	DNA fusion gene vaccination mobilizes effective antiâ€leukemic cytotoxic T lymphocytes from a tolerized repertoire. European Journal of Immunology, 2008, 38, 2118-2130.	2.9	20
120	Exploring the pathways to chronic lymphocytic leukemia. Blood, 2021, 138, 827-835.	1.4	20
121	Anti-Idiotypic Therapy of Leukemias and Lymphomas (Part 1 of 2). Chemical Immunology and Allergy, 1989, 48, 126-146.	1.7	18
122	Tumor vaccines. FASEB Journal, 1991, 5, 2250-2257.	0.5	17
123	IgG-secreting lymphoplasmacytoid leukaemia: a B-cell disorder with extensively mutated VH genes undergoing Ig isotype-switching frequently associated with trisomy 12. British Journal of Haematology, 2000, 109, 71-80.	2.5	16
124	A DNA Fusion Vaccine Induces Bactericidal Antibodies to a Peptide Epitope from the PorA Porin of <i>Neisseria meningitidis</i> . Infection and Immunity, 2008, 76, 334-338.	2.2	16
125	Celebrating 20 Years of IGHV Mutation Analysis in CLL. HemaSphere, 2020, 4, e334.	2.7	16
126	Immunogenetic analysis of a panel of monoclonal IgG and IgM anti-PDC-E2/X antibodies derived from patients with primary biliary cirrhosis. Journal of Hepatology, 1998, 28, 582-594.	3.7	15

#	Article	IF	CITATIONS
127	Immunogenetic analysis reveals that epitope shifting occurs during B-cell affinity maturation in primary biliary cirrhosis11Edited by J. Karn. Journal of Molecular Biology, 2001, 306, 37-46.	4.2	15
128	DNA fusion gene vaccines induce cytotoxic Tâ€cell attack on naturally processed peptides of human prostateâ€specific membrane antigen. European Journal of Immunology, 2011, 41, 2447-2456.	2.9	15
129	Targeted inhibition of elF4A suppresses B-cell receptor-induced translation and expression of MYC and MCL1 in chronic lymphocytic leukemia cells. Cellular and Molecular Life Sciences, 2021, 78, 6337-6349.	5.4	14
130	Dual Recognition of Lipid A and DNA by Human Antibodies Encoded by the V _H 4â€21 Gene A Possible Link between Infection and Lupus ^a . Annals of the New York Academy of Sciences, 1995, 764, 427-432.	3.8	13
131	DNA fusion vaccine designs to induce tumor-lytic CD8+ T-cell attack via the immunodominant cysteine-containing epitope of NY-ESO 1. International Journal of Cancer, 2013, 133, 1400-1407.	5.1	13
132	Preclinical Evaluation of a Novel SHIP1 Phosphatase Activator for Inhibition of PI3K Signaling in Malignant B Cells. Clinical Cancer Research, 2020, 26, 1700-1711.	7.0	13
133	Isotype switch variants reveal clonally related subpopulations in diffuse large B-cell lymphoma. Blood, 2000, 96, 2550-2556.	1.4	12
134	BCR signaling contributes to autophagy regulation in chronic lymphocytic leukemia. Leukemia, 2020, 34, 640-644.	7.2	12
135	Biased utilization of immunoglobulin variable region heavy- and light-chain genes by the malignant CD5- B lymphocytes from patients with Burkitt's lymphoma. International Journal of Cancer, 1994, 58, 226-232.	5.1	11
136	Antiâ€ j: Human Cold Agglutinins Recognizing Linear (i) and Branched (I) Type 2 Chains. Vox Sanguinis, 1994, 67, 216-221.	1.5	11
137	A human monoclonal antibody encoded by the V4-34 gene segment recognises melanoma-associated ganglioside via CDR3 and FWR1. Human Antibodies, 1999, 9, 95-106.	1.5	11
138	VH gene sequences from a novel tropical splenic lymphoma reveal a naive B cell as the cell of origin. British Journal of Haematology, 1999, 107, 114-120.	2.5	11
139	The IGHV1-69/IGHJ3 recombinations of unmutated CLL are distinct from those of normal B cells. Blood, 2012, 119, 2106-2109.	1.4	11
140	Immunogenetics of human IgE. Human Antibodies, 1996, 7, 157-166.	1.5	10
141	An analogue peptide from the Cancer/Testis antigen PASD1 induces CD8+ T cell responses against naturally processed peptide. Cancer Immunity, 2013, 13, 16.	3.2	10
142	Engineering DNA Vaccines that Include Plant Virus Coat Proteins. Biotechnology and Genetic Engineering Reviews, 2003, 20, 101-116.	6.2	9
143	Higher levels of reactive oxygen species are associated with anergy in chronic lymphocytic leukemia. Haematologica, 2015, 100, e265-e268.	3.5	9
144	Insertion of atypical glycans into the tumor antigen-binding site identifies DLBCLs with distinct origin and behavior. Blood, 2021, 138, 1570-1582.	1.4	9

#	Article	IF	CITATIONS
145	DNA gene fusion vaccines against cancer. Current Opinion in Molecular Therapeutics, 2002, 4, 41-8.	2.8	9
146	Update on tumor vaccines. International Journal of Clinical and Laboratory Research, 1992, 22, 84-89.	1.0	8
147	Intronic BCL-6 mutations are preferentially targeted to the translocated allele in t(3;14)(q27;q32) non-Hodgkin B-cell lymphoma. Blood, 2003, 102, 1872-1876.	1.4	8
148	Evaluation of the VP22 protein for enhancement of a DNA vaccine against anthrax. Genetic Vaccines and Therapy, 2005, 3, 3.	1.5	8
149	VH gene analysis of Burkitt's lymphoma in children from north-western Iran. British Journal of Haematology, 1998, 103, 1116-1123.	2.5	7
150	Incidence of novel N-glycosylation sites in the B-cell receptor of lymphomas associated with immunodeficiency. British Journal of Haematology, 2004, 124, 604-609.	2.5	7
151	Amplification of immune responses against a DNA-delivered idiotypic lymphoma antigen by fusion to the B subunit of E. coli heat labile toxin. Vaccine, 2009, 27, 4289-4296.	3.8	7
152	PEITC-mediated inhibition of mRNA translation is associated with both inhibition of mTORC1 and increased eIF2α phosphorylation in established cell lines and primary human leukemia cells. Oncotarget, 2016, 7, 74807-74819.	1.8	7
153	Failure of Vaccination With Idiotypic Protein or DNA, (+/???IL-2), the Depletion of Regulatory T Cells, or the Blockade of CTLA-4 to Prolong Dormancy in Mice With BCL1 Lymphoma. Journal of Immunotherapy, 2005, 28, 525-534.	2.4	6
154	High-affinity memory B cells induced by conjugate vaccines against weak tumor antigens are vulnerable to nonconjugated antigen. Blood, 2011, 118, 650-659.	1.4	6
155	Linked CD4 T Cell Help: Broadening Immune Attack Against Cancer by Vaccination. Current Topics in Microbiology and Immunology, 2016, 405, 123-143.	1.1	6
156	Determining Mutational Status of Immunoglobulin V Genes in Chronic Lymphocytic Leukemia: A Useful Prognostic Indicator. , 2005, 115, 129-144.		5
157	Optimizing cancer immunotherapy trials: Back to basics. European Journal of Immunology, 2006, 36, 1070-1073.	2.9	5
158	Understanding and activating immunity against human cancer. Current Opinion in Immunology, 2010, 22, 212-214.	5.5	5
159	B Cells Producing Pathogenic Autoantibodies. , 2004, , 381-401.		5
160	B-cell receptor signaling induces proteasomal degradation of PDCD4 via MEK1/2 and mTORC1 in malignant B cells. Cellular Signalling, 2022, 94, 110311.	3.6	5
161	Characterisation of a light chain loss variant of the BCL1 lymphoma. Molecular Immunology, 1991, 28, 789-799.	2.2	4
162	Identification and Assembly of V Genes as Idiotype-Specific DNA Fusion Vaccines in Multiple Myeloma. ,		4

2005, 113, 105-120.

#	Article	IF	CITATIONS
163	Cancer Vaccines. , 2007, , 183-204.		4
164	Harnessing Innate Immunity to Suppress Lymphoma. Journal of Clinical Oncology, 2010, 28, 4295-4296.	1.6	4
165	DC-SIGN binding to mannosylated B-cell receptors in follicular lymphoma down-modulates receptor signaling capacity. Scientific Reports, 2021, 11, 11676.	3.3	4
166	VH Gene Sequences From Primary Central Nervous System Lymphomas Indicate Derivation From Highly Mutated Germinal Center B Cells With Ongoing Mutational Activity. Blood, 1999, 94, 1738-1746.	1.4	4
167	Hodgkin's Disease — New Insights from Immunoglobulin Genetics. New England Journal of Medicine, 1995, 333, 934-936.	27.0	3
168	Somatic mutation of bcl-6 genes can occur in the absence of VH mutations in chronic lymphocytic leukemia. Blood, 2000, 95, 3534-3540.	1.4	3
169	Humoral effector mechanisms in the immunity to cancer. Trends in Immunology, 1990, 11, 348-349.	7.5	2
170	Phage surface expression for analysis of recognition sites of human autoantibodies: Comparison of single chain Fv and Fab. Human Antibodies, 1997, 8, 124-128.	1.5	2
171	Vaccine Therapy in NHL: Future Promises and Current Limitations. Leukemia and Lymphoma, 2003, 44, S85-S90.	1.3	2
172	Lineage complexity in multiple myeloma?. Leukemia and Lymphoma, 2006, 47, 1997-1998.	1.3	2
173	Introduction to a review series on advances in cell-based immune therapeutics in hematology. Blood, 2016, 127, 3293-3293.	1.4	2
174	B-cell receptor dependent phagocytosis and presentation of particulate antigen by chronic lymphocytic leukemia cells. Exploration of Targeted Anti-tumor Therapy, 2022, 3, 37-49.	0.8	2
175	Heterogeneity in neoplastic cell populations in chronic lymphocytic leukaemia defined by immunoglobulin expression and secretion in vitro. Leukemia Research, 1988, 12, 123-127.	0.8	1
176	Idiotype Gene Rescue in Follicular Lymphoma. , 2005, 115, 145-172.		1
177	Genetic Vaccines against Cancer. , 2013, , 223-239.		1
178	Immunogenetic analysis of the immune response to pneumococcal polysaccharide. , 2000, 30, 1214.		1
179	BTK-independent regulation of calcium signalling downstream of the B-cell receptor in malignant B-cells. Cellular Signalling, 2022, 96, 110358.	3.6	1
180	Use of Phage Expression to Analyze Regions of a Human V4-34(VH4-21)-encoded IgG Autoantibody Required for Recognition of DNA No Involvement of the 9G4 Idiotope. Annals of the New York Academy of Sciences, 1997, 815, 338-341.	3.8	0

Freda K Stevenson

#	Article	IF	CITATIONS
181	DNA Fusion Vaccines Against B-Cell Tumors. , 2000, 29, 405-424.		0
182	Introduction to a review series on biological insights into lymphoid tumors. Blood, 2018, 131, 2275-2275.	1.4	0
183	Introduction to a review series on understanding and treating primary immunodeficiency. Blood, 2020, 135, 591-591.	1.4	0
184	Introduction to a review series on small-molecule targeted therapies for lymphoid malignancies. Blood, 2021, 138, 1089-1089.	1.4	0
185	Surface IgM of Chronic Lymphocytic Leukemia Cells Displays Unusual Glycans Indicative of Antigen Engagement In Vivo Blood, 2009, 114, 55-55.	1.4	0
186	B-Cell Tumors. , 2011, , 351-356.		0
187	B-cell Tumors. , 2014, , 1-6.		0
188	Differential usage of an autoantibody-associated VH gene by human B-cell tumors. , 1994, , 163-172.		0
189	Idiotypic vaccination against low grade follicular B cell lymphoma. , 1996, , 299-304.		0
190	B-Cell Tumors. , 2017, , 441-446.		0
191	Turning genes into cancer vaccines. Discovery Medicine, 2005, 5, 37-42.	0.5	0